School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China.
The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, P. R. China.
Environ Sci Technol. 2020 Oct 6;54(19):11971-11979. doi: 10.1021/acs.est.0c01855. Epub 2020 Sep 9.
Hexavalent chromium contamination is a global environmental issue and usually reoccurs in alkaline reduced chromite ore processing residues (rCOPR). The oxidation of Cr(III) solids in rCOPR is one possible cause but as yet little studied. Herein, we investigated the oxidation of Cr(OH), a typical species of Cr(III) in rCOPR, at alkaline pH (9-11) with δ-MnO under oxic/anoxic conditions. Results revealed three pathways for Cr(III) oxidation under oxic conditions: (1) oxidation by oxygen, (2) oxidation by δ-MnO, and (3) catalytic oxidation by Mn(II). Oxidations in the latter two were efficient, and oxidation via Pathway 3 was continuous and increased dramatically with increasing pH. XANES data indicated feitknechtite (β-MnOOH) and hausmannite (MnO) were the reduction products and catalytic substances. Additionally, a kinetic model was established to describe the relative contributions of each pathway at a specific time. The simulation outcomes showed that Cr(VI) was mainly formed via Pathway 2 (>51%) over a short time frame (10 days), whereas in a longer-term (365 days), Pathway 3 predominated the oxidation (>78%) with an increasing proportion over time. These results suggest Cr(III) solids can be oxidized under alkaline oxic conditions even with a small amount of manganese oxides, providing new perspectives on Cr(VI) reoccurrence in rCOPR and emphasizing the environmental risks of Cr(III) solids in alkaline environments.
六价铬污染是一个全球性的环境问题,通常在碱性还原铬铁矿加工残渣(rCOPR)中再次出现。rCOPR 中 Cr(III) 固体的氧化是一个可能的原因,但迄今为止研究甚少。在此,我们研究了在碱性 pH(9-11)条件下δ-MnO 在好氧/缺氧条件下对 rCOPR 中 Cr(III) 的典型物种 Cr(OH) 的氧化。结果表明,在好氧条件下,Cr(III)的氧化有三种途径:(1)氧气氧化,(2)δ-MnO 氧化,(3)Mn(II)催化氧化。后两种氧化途径效率很高,并且通过途径 3 的氧化是连续的,并随 pH 值的增加而急剧增加。XANES 数据表明针铁矿(β-MnOOH)和黑锰矿(MnO)是还原产物和催化物质。此外,建立了一个动力学模型来描述特定时间每个途径的相对贡献。模拟结果表明,在短时间(10 天)内,Cr(VI)主要通过途径 2(>51%)形成,而在较长时间(365 天)内,途径 3 占主导地位(>78%),随着时间的推移,其比例逐渐增加。这些结果表明,即使在少量锰氧化物存在的情况下,碱性好氧条件下也可以氧化 Cr(III)固体,为 rCOPR 中 Cr(VI)再次出现提供了新的视角,并强调了碱性环境中 Cr(III)固体的环境风险。