Suppr超能文献

研究喉气管狭窄对上气道空气动力学的影响。

Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics.

作者信息

Cheng Tracy, Carpenter David, Cohen Seth, Witsell David, Frank-Ito Dennis O

机构信息

Division of Head and Neck Surgery and Communication Sciences, the Division of Head and Neck Surgery and Communication Sciences, Duke University, Durham, North Carolina, U.S.A.

Duke University Medical Center, Duke University, Durham, North Carolina, U.S.A.

出版信息

Laryngoscope. 2018 Apr;128(4):E141-E149. doi: 10.1002/lary.26954. Epub 2017 Oct 17.

Abstract

OBJECTIVE

Very little is known about the impact of laryngotracheal stenosis (LTS) on inspiratory airflow and resistance, especially in air hunger states. This study investigates the effect of LTS on airway resistance and volumetric flow across three different inspiratory pressures.

METHODS

Head-and-neck computed tomography scans of 11 subjects from 2010 to 2016 were collected. Three-dimensional reconstructions of the upper airway from the nostrils to carina, including the oral cavity, were created for one subject with a normal airway and for 10 patients with LTS. Airflow simulations were conducted using computational fluid dynamics modeling at three different inspiratory pressures (10, 25, 40 pascals [Pa]) for all subjects under two scenarios: 1) inspiration through nostrils only (MC), and 2) through both nostrils and mouth (MO).

RESULTS

Volumetric flows in the normal subject at the three inspiratory pressures were considerably higher (MC: 11.8-26.1 L/min; MO: 17.2-36.9 L/min) compared to those in LTS (MC: 2.86-6.75 L/min; MO: 4.11-9.00 L/min). Airway resistances in the normal subject were 0.051 to 0.092 pascal seconds per milliliter (Pa.s)/mL (MC) and 0.035-0.065 Pa.s/mL (MO), which were approximately tenfold lower than those of subjects with LTS: 0.39 to 0.89 Pa.s/mL (MC) and 0.45 to 0.84 Pa.s/mL (MO). Furthermore, subjects with glottic stenosis had the greatest resistance, whereas subjects with subglottic stenosis had the greatest variability in resistance. Subjects with tracheal stenosis had the lowest resistance.

CONCLUSION

This pilot study demonstrates that LTS increases resistance and decreases airflow. Mouth breathing significantly improved airflow and resistance but cannot completely compensate for the effects of stenosis. Furthermore, location of stenosis appears to modulate the effect of the stenosis on resistance differentially.

LEVEL OF EVIDENCE

NA. Laryngoscope, 128:E141-E149, 2018.

摘要

目的

关于喉气管狭窄(LTS)对吸气气流和阻力的影响,尤其是在空气饥饿状态下,人们了解甚少。本研究调查了LTS在三种不同吸气压力下对气道阻力和容积流量的影响。

方法

收集了2010年至2016年11名受试者的头颈计算机断层扫描图像。为1名气道正常的受试者和10名LTS患者创建了从鼻孔到隆突(包括口腔)的上气道三维重建模型。在两种情况下,对所有受试者在三种不同吸气压力(10、25、40帕斯卡[Pa])下使用计算流体动力学模型进行气流模拟:1)仅通过鼻孔吸气(MC),以及2)通过鼻孔和口腔同时吸气(MO)。

结果

与LTS受试者相比,正常受试者在三种吸气压力下的容积流量显著更高(MC:11.8 - 26.1升/分钟;MO:17.2 - 36.9升/分钟),而LTS受试者的容积流量为(MC:2.86 - 6.75升/分钟;MO:4.11 - 9.00升/分钟)。正常受试者的气道阻力为0.051至0.092帕斯卡秒每毫升(Pa.s)/mL(MC)和0.035 - 0.065 Pa.s/mL(MO),约比LTS受试者低十倍:0.39至0.89 Pa.s/mL(MC)和0.45至0.84 Pa.s/mL(MO)。此外,声门狭窄的受试者阻力最大,而声门下狭窄的受试者阻力变化最大。气管狭窄的受试者阻力最低。

结论

这项初步研究表明,LTS会增加阻力并降低气流。张口呼吸显著改善了气流和阻力,但不能完全补偿狭窄的影响。此外,狭窄部位似乎对狭窄对阻力的影响有不同的调节作用。

证据水平

无。《喉镜》,2018年,第128卷,E141 - E149页。

相似文献

1
Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics.
Laryngoscope. 2018 Apr;128(4):E141-E149. doi: 10.1002/lary.26954. Epub 2017 Oct 17.
2
Comparison of Inhaled Drug Delivery in Patients With One- and Two-level Laryngotracheal Stenosis.
Laryngoscope. 2023 Feb;133(2):366-374. doi: 10.1002/lary.30212. Epub 2022 May 24.
3
Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis.
Otolaryngol Head Neck Surg. 2021 Apr;164(4):829-840. doi: 10.1177/0194599820959674. Epub 2020 Oct 13.
4
Measuring in situ central airway resistance in patients with laryngotracheal stenosis.
Laryngoscope. 1999 Sep;109(9):1516-20. doi: 10.1097/00005537-199909000-00029.
5
Relationship between degree of obstruction and airflow limitation in subglottic stenosis.
Laryngoscope. 2018 Jul;128(7):1551-1557. doi: 10.1002/lary.27006. Epub 2017 Nov 24.
7
A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway.
Exp Comput Multiph Flow. 2023;5(3):235-246. doi: 10.1007/s42757-022-0151-9. Epub 2023 Mar 18.
8
Physiology-based minimum clinically important difference thresholds in adult laryngotracheal stenosis.
Laryngoscope. 2014 Oct;124(10):2313-20. doi: 10.1002/lary.24641. Epub 2014 Apr 4.
9
Voice quality in laryngotracheal stenosis: impact of dilation and level of stenosis.
Ann Otol Rhinol Laryngol. 2015 May;124(5):413-8. doi: 10.1177/0003489414564249. Epub 2014 Dec 17.
10
The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology.
Ann Otol Rhinol Laryngol. 2019 May;128(5):453-459. doi: 10.1177/0003489419826601. Epub 2019 Jan 28.

引用本文的文献

3
A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway.
Exp Comput Multiph Flow. 2023;5(3):235-246. doi: 10.1007/s42757-022-0151-9. Epub 2023 Mar 18.
4
Airway Resistance and Respiratory Distress in Laryngeal Cancer: A Computational Fluid Dynamics Study.
Laryngoscope. 2023 Oct;133(10):2734-2741. doi: 10.1002/lary.30649. Epub 2023 Mar 23.
5
Comparison of Inhaled Drug Delivery in Patients With One- and Two-level Laryngotracheal Stenosis.
Laryngoscope. 2023 Feb;133(2):366-374. doi: 10.1002/lary.30212. Epub 2022 May 24.
7
Impact of gastroesophageal reflux in the pathogenesis of tracheal stenosis.
Transl Cancer Res. 2020 Mar;9(3):2123-2135. doi: 10.21037/tcr.2020.03.24.
8
A systematic analysis of surgical interventions for the airway in the mature unilateral cleft lip nasal deformity: a single case study.
Int J Comput Assist Radiol Surg. 2022 Jan;17(1):41-53. doi: 10.1007/s11548-021-02396-z. Epub 2021 Jun 2.
9
The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
Comput Biol Med. 2020 Dec;127:104099. doi: 10.1016/j.compbiomed.2020.104099. Epub 2020 Nov 1.
10
Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis.
Otolaryngol Head Neck Surg. 2021 Apr;164(4):829-840. doi: 10.1177/0194599820959674. Epub 2020 Oct 13.

本文引用的文献

1
Laryngotracheal Stenosis: Risk Factors for Tracheostomy Dependence and Dilation Interval.
Otolaryngol Head Neck Surg. 2017 Feb;156(2):321-328. doi: 10.1177/0194599816675323. Epub 2016 Oct 26.
2
Abnormal vocal cord movement in patients with and without airway obstruction and asthma symptoms.
Clin Exp Allergy. 2017 Feb;47(2):200-207. doi: 10.1111/cea.12828. Epub 2016 Oct 24.
3
Review of adult laryngotracheal stenosis: pathogenesis, management, and outcomes.
Curr Opin Otolaryngol Head Neck Surg. 2016 Dec;24(6):489-493. doi: 10.1097/MOO.0000000000000305.
4
Characterizing human nasal airflow physiologic variables by nasal index.
Respir Physiol Neurobiol. 2016 Oct;232:66-74. doi: 10.1016/j.resp.2016.07.004. Epub 2016 Jul 16.
5
Airway reconstruction: review of an approach to the advanced-stage laryngotracheal stenosis.
Braz J Otorhinolaryngol. 2017 May-Jun;83(3):299-312. doi: 10.1016/j.bjorl.2016.03.012. Epub 2016 Apr 27.
6
Reresection for recurrent stenosis after primary tracheal repair.
J Thorac Dis. 2016 Mar;8(Suppl 2):S153-9. doi: 10.3978/j.issn.2072-1439.2016.01.66.
7
Effect of vocal fold asymmetries on glottal flow.
Laryngoscope. 2016 Nov;126(11):2534-2538. doi: 10.1002/lary.25948. Epub 2016 Mar 12.
9
A computational analysis of nasal vestibule morphologic variabilities on nasal function.
J Biomech. 2016 Feb 8;49(3):450-7. doi: 10.1016/j.jbiomech.2016.01.009. Epub 2016 Jan 19.
10
Comparison of glottal flow rate characteristics based on experimental and computational data.
J Acoust Soc Am. 2015 Oct;138(4):2427-9. doi: 10.1121/1.4932022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验