Suppr超能文献

计算流体动力学在喉气管病理学评估中的应用。

The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology.

作者信息

Mason Eric C, McGhee Samuel, Zhao Kai, Chiang Tendy, Matrka Laura

机构信息

1 Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA.

2 Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.

出版信息

Ann Otol Rhinol Laryngol. 2019 May;128(5):453-459. doi: 10.1177/0003489419826601. Epub 2019 Jan 28.

Abstract

OBJECTIVES

Laryngotracheal stenosis and obstruction can be challenging to manage. Traditional assessment tools are limited in clinical correlation. Three-dimensional computational fluid dynamics (CFD) modeling is a novel technique used to analyze airflow dynamics. The objective of this study was to apply CFD to the human upper airway to explore its utility.

METHODS

CFD models were constructed on an adult patient with an obstructive tracheal lesion before and after intervention and on an adult with normal airway anatomy, using computed tomographic imaging obtained retrospectively. Key airflow metrics were calculated.

RESULTS

CFD provided detailed airway geometry. The normal airway had a peak flow velocity of 3.12 m/s, wall shear stress of 0.30 Pa, and resistance of 0.02 Pa/mL/s. The pathologic patient showed an elevated peak flow velocity of 12.25 m/s, wall shear stress of 3.90 Pa, and resistance of 0.22 Pa/mL/s. This was reflected clinically with dyspnea, stridor, and obstructive impairment via pulmonary function testing. Following treatment, peak flow velocity corrected to 3.95 m/s, wall shear stress to 0.72Pa, and resistance to 0.01 Pa/mL/s. Cross-sectional area improved to 190 mm from a minimum of 53 mm at the same segment. Stridor and dyspnea resolved.

CONCLUSIONS

CFD metrics were calculated on the normal, diseased, and posttreatment upper airway. Variations were reflected in clinical symptoms. These methods could model surgical outcomes and anticipate disease severity.

摘要

目的

喉气管狭窄和阻塞的处理具有挑战性。传统评估工具在临床相关性方面存在局限性。三维计算流体动力学(CFD)建模是一种用于分析气流动力学的新技术。本研究的目的是将CFD应用于人体上呼吸道,以探索其效用。

方法

使用回顾性获取的计算机断层扫描成像,在一名患有阻塞性气管病变的成年患者干预前后以及一名气道解剖结构正常的成年人身上构建CFD模型。计算关键气流指标。

结果

CFD提供了详细的气道几何结构。正常气道的峰值流速为3.12米/秒,壁面剪应力为0.30帕斯卡,阻力为0.02帕斯卡/毫升/秒。患病患者的峰值流速升高至12.25米/秒,壁面剪应力为3.90帕斯卡,阻力为0.22帕斯卡/毫升/秒。这在临床上表现为呼吸困难、喘鸣以及通过肺功能测试显示的阻塞性损害。治疗后,峰值流速校正为3.95米/秒,壁面剪应力为0.72帕斯卡,阻力为0.01帕斯卡/毫升/秒。同一节段的横截面积从最小的53平方毫米改善至190平方毫米。喘鸣和呼吸困难症状消失。

结论

对正常、患病和治疗后的上呼吸道计算了CFD指标。这些变化反映在临床症状中。这些方法可以模拟手术结果并预测疾病严重程度。

相似文献

1
The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology.
Ann Otol Rhinol Laryngol. 2019 May;128(5):453-459. doi: 10.1177/0003489419826601. Epub 2019 Jan 28.
2
Quantification of tissue-engineered trachea performance with computational fluid dynamics.
Laryngoscope. 2018 Aug;128(8):E272-E279. doi: 10.1002/lary.27233. Epub 2018 May 14.
3
Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis.
Otolaryngol Head Neck Surg. 2021 Apr;164(4):829-840. doi: 10.1177/0194599820959674. Epub 2020 Oct 13.
4
Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics.
Laryngoscope. 2018 Apr;128(4):E141-E149. doi: 10.1002/lary.26954. Epub 2017 Oct 17.
5
Computational fluid dynamics model of laryngotracheal stenosis and correlation to pulmonary function measures.
Respir Physiol Neurobiol. 2023 Jun;312:104037. doi: 10.1016/j.resp.2023.104037. Epub 2023 Feb 25.
6
Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.
Int J Pediatr Otorhinolaryngol. 2018 Jun;109:180-184. doi: 10.1016/j.ijporl.2018.04.002. Epub 2018 Apr 5.
7
Computational fluid dynamics modelling of human upper airway: A review.
Comput Methods Programs Biomed. 2020 Nov;196:105627. doi: 10.1016/j.cmpb.2020.105627. Epub 2020 Jun 26.
8
Modeling flow in a compromised pediatric airway breathing air and heliox.
Laryngoscope. 2008 Dec;118(12):2205-11. doi: 10.1097/MLG.0b013e3181856051.
9
Modeling flow in a compromised pediatric airway breathing air and heliox.
Laryngoscope. 2009 Jan;119(1):145-51. doi: 10.1002/lary.20015.
10
Comparison of Inhaled Drug Delivery in Patients With One- and Two-level Laryngotracheal Stenosis.
Laryngoscope. 2023 Feb;133(2):366-374. doi: 10.1002/lary.30212. Epub 2022 May 24.

引用本文的文献

2
Airway Resistance and Respiratory Distress in Laryngeal Cancer: A Computational Fluid Dynamics Study.
Laryngoscope. 2023 Oct;133(10):2734-2741. doi: 10.1002/lary.30649. Epub 2023 Mar 23.
3
Computational Fluid Dynamic Modeling Reveals Nonlinear Airway Stress during Trachea Development.
J Pediatr. 2021 Nov;238:324-328.e1. doi: 10.1016/j.jpeds.2021.07.038. Epub 2021 Jul 18.
4
Assessing Changes in Airflow and Energy Loss in a Progressive Tracheal Compression Before and After Surgical Correction.
Ann Biomed Eng. 2020 Feb;48(2):822-833. doi: 10.1007/s10439-019-02410-1. Epub 2019 Dec 2.

本文引用的文献

2
Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics.
Laryngoscope. 2018 Apr;128(4):E141-E149. doi: 10.1002/lary.26954. Epub 2017 Oct 17.
3
Idiopathic Subglottic Stenosis: Long-Term Outcomes of Open Surgical Techniques.
Otolaryngol Head Neck Surg. 2017 May;156(5):906-911. doi: 10.1177/0194599817691955. Epub 2017 Feb 14.
4
Review of adult laryngotracheal stenosis: pathogenesis, management, and outcomes.
Curr Opin Otolaryngol Head Neck Surg. 2016 Dec;24(6):489-493. doi: 10.1097/MOO.0000000000000305.
5
Challenges in the Management of Laryngeal Stenosis.
Indian J Otolaryngol Head Neck Surg. 2016 Sep;68(3):294-9. doi: 10.1007/s12070-015-0936-2. Epub 2015 Dec 16.
6
The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area.
J Biomech. 2016 Jun 14;49(9):1670-1678. doi: 10.1016/j.jbiomech.2016.03.051. Epub 2016 Apr 1.
7
Computational fluid dynamics modelling in cardiovascular medicine.
Heart. 2016 Jan;102(1):18-28. doi: 10.1136/heartjnl-2015-308044. Epub 2015 Oct 28.
8
Quantitative assessment of the upper airway in infants and children with subglottic stenosis.
Laryngoscope. 2016 May;126(5):1225-31. doi: 10.1002/lary.25482. Epub 2015 Jul 30.
9
Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
Anat Rec (Hoboken). 2014 Nov;297(11):2187-95. doi: 10.1002/ar.23033.
10
A comparative analysis of open surgery vs endoscopic balloon dilation for pediatric subglottic stenosis.
JAMA Otolaryngol Head Neck Surg. 2014 Oct;140(10):901-5. doi: 10.1001/jamaoto.2014.1742.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验