Suppr超能文献

社会特征、社会网络与进化生物学。

Social traits, social networks and evolutionary biology.

作者信息

Fisher D N, McAdam A G

机构信息

Department for Integrative Biology, University of Guelph, Guelph, Ontario, Canada.

出版信息

J Evol Biol. 2017 Dec;30(12):2088-2103. doi: 10.1111/jeb.13195. Epub 2017 Nov 4.

Abstract

The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes.

摘要

社会环境既是大多数生物体重要的选择因素,也是其相互作用产生的一种特性。作为种群成员间相互作用的集合,社会环境是多组关系的产物,因此可以用网络或矩阵来表示。动物社会网络分析关注的是这些网络为何具有它们现有的结构,以及代表个体社会表型某些方面的网络特征是否与它们的适应性相关。与此同时,数量遗传学家已经证明,在社会背景中表达的性状可能取决于相互作用伙伴的表型和基因型,从而导致社会环境对个体的性状和适应性以及种群的进化轨迹产生影响。因此,这两个领域都在研究相似的主题,但相对独立地得出了这些观点。我们回顾了这些方法是如何产生分歧的,以及它们如何保持明显的平行性,从而具有很强的互补潜力。这表明,尽管有不同的理论体系,但一个领域的进展可能会为另一个领域提供信息。网络分析中用于量化社会表型和识别群落结构的技术,应该对研究个体行为与群体水平表型之间关系的人有用。将社会关联矩阵纳入数量遗传模型也可能减少遗传力估计中的偏差,并能够估计社会连通性对性状表达的影响。当前在社会背景下测量自然选择的方法明确考虑了这样一个事实,即一个性状不一定是单个个体的属性,而网络方法在将网络指标与个体适应性联系起来时尚未考虑这一点。利用考虑其他个体基因影响的性状(即间接遗传效应)的进化模型,有可能理解种群中整个社会相互作用网络如何影响表型,并预测这些性状可能如何进化。通过社会网络分析和数量遗传学的理论整合,我们希望确定兼容性和不兼容性的领域,并将研究工作导向最有前景的领域。继续这种综合可能会为社会背景中表达的性状的进化以及复杂细微的社会表型的进化后果提供重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验