Suppr超能文献

扩散的遗传学。

Genetics of dispersal.

机构信息

Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland.

School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.

出版信息

Biol Rev Camb Philos Soc. 2018 Feb;93(1):574-599. doi: 10.1111/brv.12356. Epub 2017 Aug 3.

Abstract

Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.

摘要

扩散是种群和群落生态与进化动态的核心过程,因为它对基因流动和种群动态有多种影响。它受到进化变化的影响,这就引出了一个问题,即这种潜在复杂特征的遗传基础是什么?为了解决这个问题,我们 (i) 回顾了关于扩散遗传基础的实证文献,(ii) 探讨了理论上对扩散进化的研究如何表现扩散的遗传学,以及 (iii) 讨论了扩散的遗传基础如何影响扩散进化的理论预测和潜在后果。从细菌到植物和动物,许多生物的扩散都有可检测的遗传基础。一般来说,有证据表明扩散或与扩散相关的表型存在显著的遗传变异,或者自然种群中扩散的微进化存在证据。扩散通常是几个相互作用的特征的结果,这种复杂性反映在其遗传结构中:虽然一些具有中等至较大影响的基因可以影响扩散的某些方面,但扩散特征通常是多基因的。扩散特征之间以及与选择下的其他特征之间的相关性很常见,并且扩散的遗传基础可能高度依赖于环境。相比之下,模型在历史上一直考虑扩散的高度简化遗传结构。直到最近,模型才开始考虑多个影响扩散的基因座,以及非加性效应,如显性和上位性,这表明扩散的遗传基础可以影响进化率和结果,特别是在非平衡条件下。例如,控制扩散的基因座数量可以影响扩散进化在范围转移期间的预测速度以及相应的人口影响。因此,为了使模型能够超越纯粹的理论,在当前和未来的环境条件下对进化和生态动态做出更有用的预测,有必要在扩散的遗传结构中纳入更多的现实性。为了提供这些进展的信息,实证研究需要回答有关特定基因是否构成扩散变异、依赖于环境的扩散表型和行为的遗传结构以及扩散与其他特征之间的相关性等悬而未决的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c7/5811798/f03cca4d77fb/BRV-93-574-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验