Suppr超能文献

离心微流控平台上精确控制不同形态模式的超重力诱导的多细胞球体生成。

Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform.

机构信息

Interdisciplinary Program for Bioengineering, Seoul National University Graduate School, Seoul 03087, Republic of Korea.

出版信息

Biofabrication. 2017 Nov 14;9(4):045006. doi: 10.1088/1758-5090/aa9472.

Abstract

In living tissue, cells exist in three-dimensional (3D) microenvironments with intricate cell-cell interactions. To model these cellular environments, numerous techniques for generating cell spheroids have been proposed and improved. However, previously reported methods still have limitations in uniformity, reproducibility, scalability, throughput, etc. Here, we present a centrifugal microfluidic-based spheroid (CMS) formation method for generating both co-culture and mono-culture 3D spheroids in a highly controlled manner. We designed circularly arrayed microwells to allow the even distribution of cells introduced at the center of a rotating platform and to provide identical hypergravity conditions at each well by the centrifugal forces generated. Compared with conventional well plate-based spheroid formation, the CMS formation method significantly promotes sphericity and consistency in both size and shape with high production yields. In addition to mono-culture spheroids, we successfully generated co-culture spheroids in concentric, Janus, and sandwich shapes using human adipose-derived stem cells and human lung fibroblasts, demonstrating the versatility of our CMS formation method. We believe that our new method for generating 3D spheroids will become one of the essential technologies in the field of 3D cell culture. We also expect that we are providing an innovative means to assess cellular responses, including cell motility under different hypergravity conditions.

摘要

在活体组织中,细胞存在于具有复杂细胞间相互作用的三维 (3D) 微环境中。为了模拟这些细胞环境,已经提出并改进了许多用于生成细胞球体的技术。然而,以前报道的方法在均匀性、可重复性、可扩展性、通量等方面仍然存在局限性。在这里,我们提出了一种基于离心微流控的球体 (CMS) 形成方法,用于以高度可控的方式生成共培养和单培养 3D 球体。我们设计了圆形排列的微井,以允许均匀分布在旋转平台中心引入的细胞,并通过产生的离心力为每个微井提供相同的超重力条件。与传统的基于孔板的球体形成方法相比,CMS 形成方法显著促进了球体的球形度和一致性,在尺寸和形状上具有较高的产量。除了单培养球体外,我们还成功地使用人脂肪来源干细胞和人肺成纤维细胞生成了同心、Janus 和夹心形状的共培养球体,证明了我们的 CMS 形成方法的多功能性。我们相信,我们生成 3D 球体的新方法将成为 3D 细胞培养领域的关键技术之一。我们还期望为评估细胞反应提供一种创新手段,包括在不同超重力条件下的细胞迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验