Suppr超能文献

通过冰模板法构建具有高比表面积和超大孔体积的分级多孔石墨碳。

Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered via Ice Templating.

机构信息

Pacific Northwest National Laboratory , 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States.

Energy Technologies and Materials Division, University of Dayton Research Institute , 300 College Park Avenue, Dayton, Ohio 45469, United States.

出版信息

ACS Nano. 2017 Nov 28;11(11):11047-11055. doi: 10.1021/acsnano.7b05085. Epub 2017 Oct 25.

Abstract

Developing hierarchical porous carbon (HPC) materials with competing textural characteristics such as surface area and pore volume in one material is difficult to accomplish, particularly for an atomically ordered graphitic carbon. Herein we describe a synthesis strategy to engineer tunable HPC materials across micro-, meso-, and macroporous length scales, allowing the fabrication of a graphitic HPC material (HPC-G) with both very high surface area (>2500 m/g) and pore volume (>11 cm/g), the combination of which has not been attained previously. The mesopore volume alone for these materials is up to 7.53 cm/g, the highest ever reported, higher than even any porous carbon's total pore volume, which for our HPC-G material was >11 cm/g. This HPC-G material was explored for use both as a supercapacitor electrode and for oil adsorption, two applications that require either high surface area or large pore volume, textural properties that are typically exclusive to one another. We accomplished these high textural characteristics by employing ice templating not only as a route for macroporous formation but as a synergistic vehicle that enabled the significant loading of the mesoporous hard template. This design scheme for HPC-G materials can be utilized in broad applications, including electrochemical systems such as batteries and supercapacitors, sorbents, and catalyst supports, particularly supports where a high degree of thermal stability is required.

摘要

开发具有相互竞争的结构特征(如比表面积和孔体积)的分层多孔碳(HPC)材料在一种材料中是很难实现的,尤其是对于原子有序的石墨碳。在此,我们描述了一种合成策略,可以在微、介观和宏观尺度上工程可调谐的 HPC 材料,从而制造出具有超高比表面积(>2500 m/g)和孔体积(>11 cm/g)的石墨 HPC 材料(HPC-G),这是以前从未达到过的组合。这些材料的介孔体积高达 7.53 cm/g,是迄今为止报道的最高值,甚至高于任何多孔碳的总孔体积,而我们的 HPC-G 材料的孔体积>11 cm/g。我们探索了这种 HPC-G 材料在超级电容器电极和油吸附方面的应用,这两种应用都需要高比表面积或大孔体积,而这些结构特性通常是相互排斥的。我们通过使用冰模板不仅作为大孔形成的途径,而且作为协同载体,实现了中孔硬模板的显著负载,从而实现了这些高结构特性。这种 HPC-G 材料的设计方案可以应用于广泛的应用领域,包括电化学系统(如电池和超级电容器)、吸附剂和催化剂载体,特别是需要高度热稳定性的载体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验