IACT, CSIC-Universidad de Granada, Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain.
Instituto Politécnico Nacional-UPIICSA, Té 950, Col. Granjas México, C.P. 08400 Mexico City, Mexico.
J Pharm Sci. 2018 Jan;107(1):273-285. doi: 10.1016/j.xphs.2017.10.015. Epub 2017 Oct 16.
The antibiotics family of sulfonamides has been used worldwide intensively in human therapeutics and farm livestock during decades. Intermolecular interactions of these sulfamides are important to understand their bioactivity and biodegradation. These interactions are also responsible for their supramolecular structures. The intermolecular interactions in the crystal polymorphs of the sulfonamides, sulfamethoxypyridazine, and sulfamethoxydiazine, as models of sulfonamides, have been studied by using quantum mechanical calculations. Different conformations in the sulphonamide molecules have been detected in the crystal polymorphs. Several intermolecular patterns have been studied to understand the molecular packing behavior in these antibiotics. Strong intermolecular hydrogen bonds and π-π interactions are the main driving forces for crystal packing in these sulfonamides. Different stability between polymorphs can explain the experimental behavior of these crystal forms. The calculated infrared spectroscopy frequencies explain the main intermolecular interactions in these crystals.
磺胺类抗生素在过去几十年中被广泛应用于人类医疗和畜牧业。这些磺胺类药物的分子间相互作用对于理解它们的生物活性和生物降解性非常重要。这些相互作用也决定了它们的超分子结构。本文使用量子力学计算研究了磺胺类药物、磺胺二甲嘧啶和磺胺二甲氧嘧啶的晶体多晶型物中的分子间相互作用,这些多晶型物可作为磺胺类药物的模型。在晶体多晶型物中检测到了磺胺类分子的不同构象。研究了几种分子间模式,以了解这些抗生素的分子堆积行为。强分子间氢键和π-π相互作用是这些磺胺类药物晶体堆积的主要驱动力。不同多晶型物之间的稳定性可以解释这些晶体形式的实验行为。计算得到的红外光谱频率解释了这些晶体中的主要分子间相互作用。