Watanabe Takanori, Tunc Birkan, Parker Drew, Kim Junghoon, Verma Ragini
Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA.
The City College of New York, New York, NY, USA.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:166-174. doi: 10.1007/978-3-319-46720-7_20. Epub 2016 Oct 2.
In this paper, we present a novel method for obtaining a low dimensional representation of a complex brain network that: (1) can be interpreted in a neurobiologically meaningful way, (2) emphasizes group differences by accounting for label information, and (3) captures the variation in disease subtypes/severity by respecting the intrinsic manifold structure underlying the data. Our method is a supervised variant of non-negative matrix factorization (NMF), and achieves dimensionality reduction by extracting an orthogonal set of subnetworks that are interpretable, reconstructive of the original data, and also discriminative at the group level. In addition, the method includes a manifold regularizer that encourages the low dimensional representations to be smooth with respect to the intrinsic geometry of the data, allowing subjects with similar disease-severity to share similar network representations. While the method is generalizable to other types of non-negative network data, in this work we have used structural connectomes (SCs) derived from diffusion data to identify the cortical/subcortical connections that have been disrupted in abnormal neurological state. Experiments on a traumatic brain injury (TBI) dataset demonstrate that our method can identify subnetworks that can reliably classify TBI from controls and also reveal insightful connectivity patterns that may be indicative of a biomarker.
在本文中,我们提出了一种获取复杂脑网络低维表示的新方法,该方法具有以下特点:(1)能够以神经生物学上有意义的方式进行解释;(2)通过考虑标签信息来强调组间差异;(3)通过尊重数据背后的内在流形结构来捕捉疾病亚型/严重程度的变化。我们的方法是一种非负矩阵分解(NMF)的监督变体,通过提取一组可解释、能重构原始数据且在组水平上具有判别力的正交子网络来实现降维。此外,该方法还包括一个流形正则化器,它促使低维表示相对于数据的内在几何结构是平滑的,使得具有相似疾病严重程度的受试者共享相似的网络表示。虽然该方法可推广到其他类型的非负网络数据,但在这项工作中,我们使用了从扩散数据中导出的结构连接组(SC)来识别在异常神经状态下被破坏的皮质/皮质下连接。在创伤性脑损伤(TBI)数据集上的实验表明,我们的方法能够识别出可以可靠地将TBI与对照组区分开来的子网络,还能揭示可能指示生物标志物的有洞察力的连接模式。