Suppr超能文献

用于判别性子网络检测的带流形正则化的标签引导非负矩阵分解

Label-Informed Non-negative Matrix Factorization with Manifold Regularization for Discriminative Subnetwork Detection.

作者信息

Watanabe Takanori, Tunc Birkan, Parker Drew, Kim Junghoon, Verma Ragini

机构信息

Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA.

The City College of New York, New York, NY, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9900:166-174. doi: 10.1007/978-3-319-46720-7_20. Epub 2016 Oct 2.

Abstract

In this paper, we present a novel method for obtaining a low dimensional representation of a complex brain network that: (1) can be interpreted in a neurobiologically meaningful way, (2) emphasizes group differences by accounting for label information, and (3) captures the variation in disease subtypes/severity by respecting the intrinsic manifold structure underlying the data. Our method is a supervised variant of non-negative matrix factorization (NMF), and achieves dimensionality reduction by extracting an orthogonal set of subnetworks that are interpretable, reconstructive of the original data, and also discriminative at the group level. In addition, the method includes a manifold regularizer that encourages the low dimensional representations to be smooth with respect to the intrinsic geometry of the data, allowing subjects with similar disease-severity to share similar network representations. While the method is generalizable to other types of non-negative network data, in this work we have used structural connectomes (SCs) derived from diffusion data to identify the cortical/subcortical connections that have been disrupted in abnormal neurological state. Experiments on a traumatic brain injury (TBI) dataset demonstrate that our method can identify subnetworks that can reliably classify TBI from controls and also reveal insightful connectivity patterns that may be indicative of a biomarker.

摘要

在本文中,我们提出了一种获取复杂脑网络低维表示的新方法,该方法具有以下特点:(1)能够以神经生物学上有意义的方式进行解释;(2)通过考虑标签信息来强调组间差异;(3)通过尊重数据背后的内在流形结构来捕捉疾病亚型/严重程度的变化。我们的方法是一种非负矩阵分解(NMF)的监督变体,通过提取一组可解释、能重构原始数据且在组水平上具有判别力的正交子网络来实现降维。此外,该方法还包括一个流形正则化器,它促使低维表示相对于数据的内在几何结构是平滑的,使得具有相似疾病严重程度的受试者共享相似的网络表示。虽然该方法可推广到其他类型的非负网络数据,但在这项工作中,我们使用了从扩散数据中导出的结构连接组(SC)来识别在异常神经状态下被破坏的皮质/皮质下连接。在创伤性脑损伤(TBI)数据集上的实验表明,我们的方法能够识别出可以可靠地将TBI与对照组区分开来的子网络,还能揭示可能指示生物标志物的有洞察力的连接模式。

相似文献

1
Label-Informed Non-negative Matrix Factorization with Manifold Regularization for Discriminative Subnetwork Detection.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:166-174. doi: 10.1007/978-3-319-46720-7_20. Epub 2016 Oct 2.
2
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.
IEEE Trans Image Process. 2011 Jul;20(7):2030-48. doi: 10.1109/TIP.2011.2105496. Epub 2011 Jan 13.
3
Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy.
Brain Imaging Behav. 2018 Jun;12(3):901-911. doi: 10.1007/s11682-017-9753-4.
4
Convex nonnegative matrix factorization with manifold regularization.
Neural Netw. 2015 Mar;63:94-103. doi: 10.1016/j.neunet.2014.11.007. Epub 2014 Dec 4.
5
An extensive assessment of network alignment algorithms for comparison of brain connectomes.
BMC Bioinformatics. 2017 Jun 6;18(Suppl 6):235. doi: 10.1186/s12859-017-1635-7.
7
Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine.
Neuroimage. 2014 Aug 1;96:183-202. doi: 10.1016/j.neuroimage.2014.03.067. Epub 2014 Apr 1.
8
Connectivity subnetwork learning for pathology and developmental variations.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):90-7. doi: 10.1007/978-3-642-40811-3_12.
9
Study subnetwork developing pattern of autism children by non-negative matrix factorization.
Comput Biol Med. 2023 May;158:106816. doi: 10.1016/j.compbiomed.2023.106816. Epub 2023 Mar 22.
10
Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks.
Neuroimage. 2016 Apr 1;129:247-259. doi: 10.1016/j.neuroimage.2016.01.056. Epub 2016 Jan 28.

引用本文的文献

1
Assessing connectivity related injury burden in diffuse traumatic brain injury.
Hum Brain Mapp. 2017 Jun;38(6):2913-2922. doi: 10.1002/hbm.23561. Epub 2017 Mar 15.

本文引用的文献

1
FERAL: network-based classifier with application to breast cancer outcome prediction.
Bioinformatics. 2015 Jun 15;31(12):i311-9. doi: 10.1093/bioinformatics/btv255.
3
Machine learning for neuroimaging with scikit-learn.
Front Neuroinform. 2014 Feb 21;8:14. doi: 10.3389/fninf.2014.00014. eCollection 2014.
4
Projective nonnegative graph embedding.
IEEE Trans Image Process. 2010 May;19(5):1126-37. doi: 10.1109/TIP.2009.2039050. Epub 2009 Dec 22.
6
Learning the parts of objects by non-negative matrix factorization.
Nature. 1999 Oct 21;401(6755):788-91. doi: 10.1038/44565.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验