School of Computer Science, National University of Defense Technology, Changsha, China.
IEEE Trans Image Process. 2011 Jul;20(7):2030-48. doi: 10.1109/TIP.2011.2105496. Epub 2011 Jan 13.
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
非负矩阵分解 (NMF) 已成为一种流行的数据表示方法,并已广泛应用于图像处理和模式识别问题。这是因为学习到的基可以被解释为数据的一种自然基于部分的表示,这种解释与将部分组合成整体的心理直觉是一致的。然而,对于实际的分类任务,NMF 忽略了数据的局部几何结构和不同类别的判别信息。此外,现有研究结果表明,学习到的基不需要基于部分,因为既没有显式的也没有隐式的约束来确保基于部分的表示。在本文中,我们将流形正则化和边缘最大化引入到 NMF 中,得到了流形正则化判别 NMF(MD-NMF),以克服上述问题。乘法更新规则 (MUR) 可用于优化 MD-NMF,但它的收敛速度较慢。在本文中,我们提出了一种快速梯度下降 (FGD) 来优化 MD-NMF。FGD 包含牛顿法,用于搜索最优步长,因此 FGD 的收敛速度比 MUR 快得多。此外,FGD 包含 MUR 作为一个特例,可用于优化 NMF 及其变体。对于一个在 R(1600) 中有 165 个样本的问题,FGD 在 28 秒内收敛,而 MUR 需要 282 秒。我们还将 FGD 应用于 MD-NMF 的变体中,实验结果证实了其效率。在几个人脸图像数据集上的实验结果表明了 MD-NMF 的有效性。