Plecitá-Hlavatá Lydie, D'alessandro Angelo, El Kasmi Karim, Li Min, Zhang Hui, Ježek Petr, Stenmark Kurt R
Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic.
Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA.
Adv Exp Med Biol. 2017;967:241-260. doi: 10.1007/978-3-319-63245-2_14.
Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.
肺动脉高压是一种复杂的肺血管疾病,严重时会导致右心衰竭。肺动脉的复杂重塑是其病理学的核心问题。这包括广泛的增殖、抗凋亡和炎症。因此,肺动脉高压的分子和细胞特征类似于癌细胞行为的标志性特征。血管重塑源于驻留细胞的显著代谢变化,我们将对此进行详细描述。它不仅影响肺动脉壁细胞,还影响其直接的微环境,包括免疫系统细胞(即巨噬细胞)。因此,异常代谢构成了肺动脉高压类癌理论的主要组成部分。肺动脉细胞的代谢变化类似于癌症相关的瓦伯格效应,涉及通过有氧糖酵解进行不完全葡萄糖氧化,同时线粒体分解代谢受到抑制,从而使氨基酸、核苷酸和脂质能够为合成代谢反应提供能量以维持增殖。巨噬细胞也会经历重叠但不同的代谢重编程,诱导特定的激活或极化状态,使其能够参与血管重塑过程。这种代谢协同作用会进一步加剧慢性炎症,促进重塑。糖酵解通量增加以及线粒体生物能量学受到抑制会促进还原当量NAD(P)H的积累。我们讨论了其中涉及的酶和反应。还原当量利用NAD(P)H作为转录共抑制因子C末端结合蛋白1的辅因子来调节蛋白质的表达,并显著影响氧化还原状态(通过谷胱甘肽、NAD(P)H氧化酶等),这些共同作用来控制肺动脉细胞的表型。线粒体代谢的改变会改变其氧化还原平衡,这与增强的NAD(P)H氧化酶活性和降低的酶促抗氧化活性一起促进了细胞的促氧化状态。在此,我们讨论了所有上述代谢变化以及由此导致的氧化还原状态改变,这些变化会导致过度增殖、抗凋亡和炎症,进而导致肺动脉壁重塑,从而确立肺动脉高压的病理过程。