Suppr超能文献

肺动脉高压中的内皮细胞活性氧与钙信号传导

Endothelial Cell Reactive Oxygen Species and Ca Signaling in Pulmonary Hypertension.

作者信息

Suresh Karthik, Shimoda Larissa A

机构信息

Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.

Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.

出版信息

Adv Exp Med Biol. 2017;967:299-314. doi: 10.1007/978-3-319-63245-2_18.

Abstract

Pulmonary hypertension (PH) refers to a disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular overload and eventually right ventricular failure, which results in high morbidity and mortality. PH is associated with heterogeneous etiologies and distinct molecular mechanisms, including abnormal migration and proliferation of endothelial and smooth muscle cells. Although the exact details are not fully elucidated, reactive oxygen species (ROS) have been shown to play a key role in promoting abnormal function in pulmonary arterial smooth muscle and endothelial cells in PH. In endothelial cells, ROS can be generated from sources such as NADPH oxidase and mitochondria, which in turn can serve as signaling molecules in a wide variety of processes including posttranslational modification of proteins involved in Ca homeostasis. In this chapter, we discuss the role of ROS in promoting abnormal vasoreactivity and endothelial migration and proliferation in various models of PH. Furthermore, we draw particular attention to the role of ROS-induced increases in intracellular Ca concentration in the pathobiology of PH.

摘要

肺动脉高压(PH)是一种以肺动脉压力升高为特征的疾病,会导致右心室负荷过重并最终引发右心室衰竭,从而导致高发病率和高死亡率。PH与多种病因和不同的分子机制相关,包括内皮细胞和平滑肌细胞的异常迁移和增殖。尽管确切细节尚未完全阐明,但活性氧(ROS)已被证明在促进PH患者肺动脉平滑肌和内皮细胞的异常功能中起关键作用。在内皮细胞中,ROS可由烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶和线粒体等来源产生,进而可在包括参与钙稳态的蛋白质翻译后修饰在内的多种过程中作为信号分子。在本章中,我们将讨论ROS在促进各种PH模型中的异常血管反应性以及内皮细胞迁移和增殖方面的作用。此外,我们特别关注ROS诱导的细胞内钙浓度升高在PH病理生物学中的作用。

相似文献

1
Endothelial Cell Reactive Oxygen Species and Ca Signaling in Pulmonary Hypertension.
Adv Exp Med Biol. 2017;967:299-314. doi: 10.1007/978-3-319-63245-2_18.
2
Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.
Free Radic Biol Med. 2015 Oct;87:36-47. doi: 10.1016/j.freeradbiomed.2015.05.042. Epub 2015 Jun 12.
4
Endothelial Nox1 oxidase assembly in human pulmonary arterial hypertension; driver of Gremlin1-mediated proliferation.
Clin Sci (Lond). 2017 Jul 16;131(15):2019-2035. doi: 10.1042/CS20160812. Print 2017 Aug 1.
7
Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension.
Adv Exp Med Biol. 2017;967:83-103. doi: 10.1007/978-3-319-63245-2_7.
8
Redox Signaling and Persistent Pulmonary Hypertension of the Newborn.
Adv Exp Med Biol. 2017;967:277-287. doi: 10.1007/978-3-319-63245-2_16.
9
Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
Eur Respir J. 2016 Jan;47(1):288-303. doi: 10.1183/13993003.00945-2015. Epub 2015 Oct 22.
10
Reactive oxygen species as therapeutic targets in pulmonary hypertension.
Ther Adv Respir Dis. 2013 Jun;7(3):175-200. doi: 10.1177/1753465812472940. Epub 2013 Jan 17.

引用本文的文献

1
Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage.
Mechanobiol Med. 2024 Apr 29;2(3):100069. doi: 10.1016/j.mbm.2024.100069. eCollection 2024 Sep.
2
Store-operated Ca entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells.
Am J Physiol Lung Cell Mol Physiol. 2025 Jun 1;328(6):L844-L857. doi: 10.1152/ajplung.00400.2024. Epub 2025 May 7.
3
Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells.
Cells. 2024 Nov 1;13(21):1807. doi: 10.3390/cells13211807.
4
Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis.
J Zhejiang Univ Sci B. 2022 Jun 15;23(6):437-450. doi: 10.1631/jzus.B2101075.
6
Downregulation of Vascular Hemeoxygenase-1 Leads to Vasculopathy in Systemic Sclerosis.
Front Physiol. 2022 May 5;13:900631. doi: 10.3389/fphys.2022.900631. eCollection 2022.
9
Reactive Oxygen Species and Endothelial Ca Signaling: Brothers in Arms or Partners in Crime?
Int J Mol Sci. 2021 Sep 10;22(18):9821. doi: 10.3390/ijms22189821.
10
Effects of FW2 Nanoparticles Toxicity in a New In Vitro Pulmonary Vascular Cells Model Mimicking Endothelial Dysfunction.
Cardiovasc Toxicol. 2022 Jan;22(1):14-28. doi: 10.1007/s12012-021-09679-6. Epub 2021 Sep 15.

本文引用的文献

1
Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry.
Am J Physiol Lung Cell Mol Physiol. 2016 Sep 1;311(3):L560-9. doi: 10.1152/ajplung.00057.2016. Epub 2016 Jul 15.
2
4D magnetic resonance flow imaging for estimating pulmonary vascular resistance in pulmonary hypertension.
J Magn Reson Imaging. 2016 Oct;44(4):914-22. doi: 10.1002/jmri.25251. Epub 2016 May 13.
3
Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension.
Am J Physiol Lung Cell Mol Physiol. 2016 Jun 1;310(11):L1199-205. doi: 10.1152/ajplung.00092.2016. Epub 2016 Apr 29.
4
Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation.
Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1090-100. doi: 10.1161/ATVBAHA.115.306964. Epub 2016 Apr 28.
6
Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2016 May 1;310(9):L846-59. doi: 10.1152/ajplung.00050.2016. Epub 2016 Mar 11.
8
O2 sensing, mitochondria and ROS signaling: The fog is lifting.
Mol Aspects Med. 2016 Feb-Mar;47-48:76-89. doi: 10.1016/j.mam.2016.01.002. Epub 2016 Jan 14.
9
A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
Pflugers Arch. 2016 Jan;468(1):43-58. doi: 10.1007/s00424-015-1736-y. Epub 2015 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验