Department of Materials Science and Engineering, Nanotechnology Research Center (ERNAM), Erciyes University , 38039 Kayseri, Turkey.
Department of Engineering Physics, Ankara University , Besevler, 06100 Ankara, Turkey.
ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39795-39803. doi: 10.1021/acsami.7b12279. Epub 2017 Oct 31.
Demanding applications in sensing, metasurfaces, catalysis, and biotechnology require fabrication of plasmonically active substrates. Herein, we demonstrate a bottom-up, versatile, and scalable approach that relies on direct growth of silver nanostructures from seed particles that were immobilized on polymer brush-grafted substrates. Our approach is based on (i) the uniform and tunable assembly of citrate-stabilized gold nanoparticles on poly(ethylene glycol) brushes to serve as seeds and (ii) the use of hydroquinone as a reducing agent, which is extremely selective to the presence of seed particles, confining the growth of silver nanostructures on the surface of the substrate. The diameter of the seed particles, concentration, as well as ratio of reactants and duration of the growth process are investigated for large-area growth of silver nanostructures with high surface coverage and plasmonic activity. The resulting silver nanostructures exhibit high levels of surface-enhanced Raman scattering activity at two different laser lines and allow detection of molecules at concentrations as low as 10 pM. The plasmonic properties of the silver nanostructures are further studied using ultrafast pump-probe spectroscopy. Spatially defined silver nanostructures are fabricated through the seed particles that are patterned via soft lithography, showing the capabilities of the presented approach in device applications.
在传感、超表面、催化和生物技术等领域的应用对等离子体活性衬底的制造提出了更高的要求。在此,我们提出了一种自下而上的、通用的和可扩展的方法,该方法依赖于将固定在聚合物刷接枝基底上的种子颗粒直接生长成等离子体活性的纳米结构。我们的方法基于:(i) 在聚乙二醇刷上均匀且可调的组装柠檬酸稳定的金纳米颗粒作为种子;(ii) 使用对种子颗粒具有极高选择性的对苯二酚作为还原剂,将银纳米结构的生长限制在基底表面。我们研究了种子颗粒的直径、浓度、反应物的比例以及生长过程的持续时间等因素,以实现具有高表面覆盖率和等离子体活性的大面积银纳米结构的生长。所得的银纳米结构在两个不同的激光线处表现出高的表面增强拉曼散射活性,并允许检测低至 10 pM 的浓度的分子。我们进一步使用超快泵浦探测光谱研究了银纳米结构的等离子体特性。通过软光刻对种子颗粒进行图案化,制备了具有空间定义的银纳米结构,展示了所提出方法在器件应用中的能力。