Bartual-Murgui Carlos, Piñeiro-López Lucía, Valverde-Muñoz F Javier, Muñoz M Carmen, Seredyuk Maksym, Real José Antonio
Institut de Ciència Molecular (ICMol), Departament de Química Inorgànica, Universitat de València , C/Catedrático José Beltrán Martínez, 2, 46980 Paterna (Valencia), Spain.
Departamento de Física Aplicada, Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia, Spain.
Inorg Chem. 2017 Nov 6;56(21):13535-13546. doi: 10.1021/acs.inorgchem.7b02272.
Understanding the origin of cooperativity and the equilibrium temperature of transition (T) displayed by the spin-crossover (SCO) compounds as well as controlling these parameters are of paramount importance for future applications. For this task, the occurrence of polymorphism, presented by a number of SCO complexes, may provide deep insight into the influence of the supramolecular organization on the SCO behavior. In this context, herein we present a novel family of mononuclear octahedral Fe complexes with formula cis-[Fe(bqen)(NCX)], where bqen is the chelating tetradentate ligand N,N'-bis(8-quinolyl)ethane-1,2-diamine and X = S, Se. Depending on the preparation method, these compounds crystallize in either the orthorhombic or the trigonal symmetry systems. While the orthorhombic phase is composed of a racemic mixture of mononuclear complexes (polymorph I), the trigonal phase contains only one of the two possible enantiomers (Λ or Δ), thereby generating a chiral crystal (polymorph II). The four derivatives undergo SCO behavior with well-differentiated T values occurring in the interval 90-233 K. On one hand, T is about 110 K (polymorph I) and 87 K (polymorph II) higher for the selenocyanate derivatives in comparison to those for their thiocyanate counterparts. These differences in T are ascribed not only to the higher ligand field induced by the selenocyanate anion but also to a remarkable difference in the structural reorganization of the [FeN] coordination core upon SCO. Likewise, the higher cooperativity observed for the thiocyanate derivatives seems to be related to their stronger intermolecular interactions within the crystal. On the other hand, T is about 53 K (thiocyanate) and 29 K (selenocyanate) higher for the trigonal polymorph II in comparison to those for the orthorhombic polymorph I. These differences, and the small changes observed in cooperativity, stem from the slightly different hetero- and homochiral crystal packing generated by the cis-[Fe(bqen)(NCX)] molecules, which determines subtle adaptations in the intermolecular contacts and the Fe coordination core.
理解自旋交叉(SCO)化合物所表现出的协同性起源和转变平衡温度(T),以及控制这些参数对于未来的应用至关重要。对于这项任务,许多SCO配合物所呈现的多晶型现象的出现,可能会为超分子组织对SCO行为的影响提供深刻见解。在此背景下,我们在此展示了一个新的单核八面体铁配合物家族,其化学式为顺式-[Fe(bqen)(NCX)],其中bqen是螯合四齿配体N,N'-双(8-喹啉基)乙烷-1,2-二胺,X = S、Se。根据制备方法,这些化合物结晶于正交晶系或三角晶系。正交相由单核配合物的外消旋混合物(多晶型I)组成,而三角相仅包含两种可能对映体中的一种(Λ或Δ),从而形成手性晶体(多晶型II)。这四种衍生物表现出自旋交叉行为,在90 - 233 K的区间内出现了差异明显的T值。一方面,与硫氰酸盐对应物相比,硒氰酸盐衍生物的T值分别约高110 K(多晶型I)和87 K(多晶型II)。T值的这些差异不仅归因于硒氰酸根阴离子诱导的更高配体场,还归因于自旋交叉时[FeN]配位核心结构重组的显著差异。同样,硫氰酸盐衍生物观察到的更高协同性似乎与其晶体中更强的分子间相互作用有关。另一方面,与正交多晶型I相比,三角多晶型II的T值分别约高53 K(硫氰酸盐)和29 K(硒氰酸盐)。这些差异以及协同性中观察到的微小变化,源于顺式-[Fe(bqen)(NCX)]分子产生的略有不同的杂手性和同手性晶体堆积,这决定了分子间接触和铁配位核心的细微适应性变化。