Suppr超能文献

利用分子动力学模拟计算揭示抑制剂与细胞内蛋白酪氨酸磷酸酶 1B 的结合机制。

Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

机构信息

a School of Physics and Electronics , Shandong Normal University , Jinan , 250014 , China.

b School of Science , Shandong Jiaotong University , Jinan , 250357 , China.

出版信息

J Biomol Struct Dyn. 2018 Nov;36(14):3636-3650. doi: 10.1080/07391102.2017.1394221. Epub 2017 Nov 6.

Abstract

Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

摘要

细胞内蛋白酪氨酸磷酸酶 1B(PTP1B)是设计和开发治疗 II 型糖尿病和肥胖症药物的最有前途的靶标之一。应用分子动力学(MD)模拟结合分子力学广义 Born 表面积(MM-GBSA)和溶剂化相互作用能方法研究了三种抑制剂(ID:901、941 和 968)与 PTP1B 的结合差异,计算结果表明,在目前的抑制剂中,抑制剂 901 对 PTP1B 具有最强的结合能力。还进行了主成分(PC)分析以研究 PTP1B 的构象变化,结果表明抑制剂与 PTP1B 的结合对 WPD 环的运动产生了显著影响。应用自由能分解方法研究了单个残基对抑制剂结合的贡献,发现三种抑制剂可以与 PTP1B 的不同残基产生氢键相互作用和疏水相互作用,这为抑制剂与 PTP1B 的结合提供了重要的力。这项研究有望为设计和开发治疗 II 型糖尿病和肥胖症的有效药物提供有意义的理论指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验