Owerre S A, Nsofini J
Perimeter Institute for Theoretical Physics, 31 Caroline St. N.- Waterloo, Ontario N2L 2Y5, Canada.
J Phys Condens Matter. 2017 Nov 15;29(45):455802. doi: 10.1088/1361-648X/aa8dcb. Epub 2017 Oct 19.
Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.
利用电荷中性准粒子进行量子信息存储有望在量子计算机的未来发挥关键作用。在这方面,固态材料中的磁振子或集体自旋波激发是量子计算未来有前景的候选者。在此,我们通过利用到具有离散Z对称性和Dzyaloshinskii-Moriya相互作用的蜂窝晶格上的量子自旋 - [公式:见正文] XYZ海森堡模型的映射,研究了具有自旋轨道相互作用的玻色子蜂窝光学晶格中狄拉克磁振子和拓扑磁振子的量子压缩。我们表明,压缩磁振子可由Z各向异性控制,并展示了在模型的铁磁和反铁磁相中系统噪声是如何周期性地改变的。我们的结果也适用于固态蜂窝(反)铁磁绝缘体。