de Lara-Castells María Pilar, Hauser Andreas W, Mitrushchenkov Alexander O, Fernández-Perea Ricardo
Instituto de Fsica Fundamental (C.S.I.C.), Serrano 123, E-28006, Madrid, Spain.
Phys Chem Chem Phys. 2017 Nov 1;19(42):28621-28629. doi: 10.1039/c7cp05869a.
An ab initio study of quantum confinement of deuterium clusters in carbon nanotubes is presented. First, density functional theory (DFT)-based symmetry-adapted perturbation theory is used to derive parameters for a pairwise potential model describing the adsorbate-nanotube interaction. Next, we analyze the quantum nuclear motion of N D molecules (N < 4) confined in carbon nanotubes using a highly accurate adsorbate-wave-function-based approach, and compare it with the motion of molecular hydrogen. We further apply an embedding approach and study zero-point energy effects on larger hexagonal and heptagonal structures of 7-8 D molecules. Our results show a preference for crystalline hexagonal close packing hcp of D molecules inside carbon nanotubes even at the cost of a reduced volumetric density within the cylindrical confinement.
本文介绍了对碳纳米管中氘团簇量子限制的从头算研究。首先,基于密度泛函理论(DFT)的对称适应微扰理论用于推导描述吸附质 - 纳米管相互作用的成对势模型的参数。接下来,我们使用基于高精度吸附波函数的方法分析限制在碳纳米管中的N个D分子(N < 4)的量子核运动,并将其与分子氢的运动进行比较。我们进一步应用嵌入方法,研究零点能量对7 - 8个D分子的更大六边形和七边形结构的影响。我们的结果表明,即使以降低圆柱限制内的体积密度为代价,碳纳米管内的D分子也倾向于形成晶体六方密堆积(hcp)。