de Lara-Castells María Pilar, Mitrushchenkov Alexander O
Instituto de Física Fundamental (AbinitSim Unit), IFF-CSIC, Madrid, Spain.
MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France.
Front Chem. 2021 Dec 8;9:796890. doi: 10.3389/fchem.2021.796890. eCollection 2021.
We overview our recent developments on a computational approach addressing quantum confinement of light atomic and molecular clusters (made of atomic helium and molecular hydrogen) in carbon nanotubes. We outline a multi-scale first-principles approach, based on density functional theory (DFT)-based symmetry-adapted perturbation theory, allowing an accurate characterization of the dispersion-dominated particle-nanotube interaction. Next, we describe a wave-function-based method, allowing rigorous fully coupled quantum calculations of the pseudo-nuclear bound states. The approach is illustrated by showing the transition from molecular aggregation to quasi-one-dimensional condensed matter systems of molecular deuterium and hydrogen as well as atomic He, as case studies. Finally, we present a perspective on future-oriented mixed approaches combining, e.g., orbital-free helium density functional theory (He-DFT), machine-learning parameterizations, with wave-function-based descriptions.
我们概述了我们最近在一种计算方法上的进展,该方法用于解决碳纳米管中轻原子和分子团簇(由原子氦和分子氢构成)的量子限制问题。我们概述了一种基于密度泛函理论(DFT)的对称适配微扰理论的多尺度第一性原理方法,该方法能够精确表征以色散为主的粒子 - 纳米管相互作用。接下来,我们描述了一种基于波函数的方法,该方法允许对伪核束缚态进行严格的全耦合量子计算。作为案例研究,通过展示从分子聚集到分子氘、氢以及原子氦的准一维凝聚态物质系统的转变来说明该方法。最后,我们展望了未来导向的混合方法,例如将无轨道氦密度泛函理论(He-DFT)、机器学习参数化与基于波函数的描述相结合。