Gnanasekaran Ramachandran
Department of Chemistry, Pondicherry University, Puducherry, 605 014, India.
J Mol Graph Model. 2017 Nov;78:88-95. doi: 10.1016/j.jmgm.2017.09.023. Epub 2017 Oct 8.
Vibrational energy diffusivities between the residues present in Amicyanin copper protein are calculated and presented in form of communication map. From those results energy flow pathways from the copper metal ion to the inter protein residue Glu31 are identified. Our finding suggests many different pathways are possible and copper metal ion in oxidized and reduced state switches the pathways. Our finding also suggests the cooperative nature of surrounding residues and water molecules towards selecting the pathways. The major transport channels in the oxidised state are, Cu---> MET28---> LYS29---> TYR30---> GLU31 and Cu---> MET98---> TYR30--- > GLU31. And in the reduced state Cu---> CYS9---> TYR30---> GLU31 and Cu---> MET28---> LYS2---> TYR30---> GLU31. We studied further the interaction energies between the copper ion and neighbouring residues using B3LYP/QZVP method. Both the methods complement each other in predicting the energy flow pathways and the cooperative nature of residues.
计算了青霉蓝蛋白铜蛋白中存在的残基之间的振动能量扩散率,并以通讯图的形式呈现。根据这些结果,确定了从铜金属离子到蛋白质间残基Glu31的能量流动途径。我们的研究结果表明,可能存在许多不同的途径,氧化态和还原态的铜金属离子会切换途径。我们的研究结果还表明,周围的残基和水分子在选择途径方面具有协同性质。氧化态下的主要传输通道是,Cu---> MET28---> LYS29---> TYR30---> GLU31和Cu---> MET98---> TYR30---> GLU31。在还原态下是Cu---> CYS9---> TYR30---> GLU31和Cu---> MET28---> LYS2---> TYR30---> GLU31。我们使用B3LYP/QZVP方法进一步研究了铜离子与相邻残基之间的相互作用能。这两种方法在预测能量流动途径和残基的协同性质方面相互补充。