Suppr超能文献

实时模拟流感大流行。

Real-time modelling of a pandemic influenza outbreak.

机构信息

Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK.

National Infections Service, Public Health England, London, UK.

出版信息

Health Technol Assess. 2017 Oct;21(58):1-118. doi: 10.3310/hta21580.

Abstract

BACKGROUND

Real-time modelling is an essential component of the public health response to an outbreak of pandemic influenza in the UK. A model for epidemic reconstruction based on realistic epidemic surveillance data has been developed, but this model needs enhancing to provide spatially disaggregated epidemic estimates while ensuring that real-time implementation is feasible.

OBJECTIVES

To advance state-of-the-art real-time pandemic modelling by (1) developing an existing epidemic model to capture spatial variation in transmission, (2) devising efficient computational algorithms for the provision of timely statistical analysis and (3) incorporating the above into freely available software.

METHODS

Markov chain Monte Carlo (MCMC) sampling was used to derive Bayesian statistical inference using 2009 pandemic data from two candidate modelling approaches: (1) a parallel-region (PR) approach, splitting the pandemic into non-interacting epidemics occurring in spatially disjoint regions; and (2) a meta-region (MR) approach, treating the country as a single meta-population with long-range contact rates informed by census data on commuting. Model discrimination is performed through posterior mean deviance statistics alongside more practical considerations. In a real-time context, the use of sequential Monte Carlo (SMC) algorithms to carry out real-time analyses is investigated as an alternative to MCMC using simulated data designed to sternly test both algorithms. SMC-derived analyses are compared with 'gold-standard' MCMC-derived inferences in terms of estimation quality and computational burden.

RESULTS

The PR approach provides a better and more timely fit to the epidemic data. Estimates of pandemic quantities of interest are consistent across approaches and, in the PR approach, across regions (e.g. is consistently estimated to be 1.76-1.80, dropping by 43-50% during an over-summer school holiday). A SMC approach was developed, which required some tailoring to tackle a sudden 'shock' in the data resulting from a pandemic intervention. This semi-automated SMC algorithm outperforms MCMC, in terms of both precision of estimates and their timely provision. Software implementing all findings has been developed and installed within Public Health England (PHE), with key staff trained in its use.

LIMITATIONS

The PR model lacks the predictive power to forecast the spread of infection in the early stages of a pandemic, whereas the MR model may be limited by its dependence on commuting data to describe transmission routes. As demand for resources increases in a severe pandemic, data from general practices and on hospitalisations may become unreliable or biased. The SMC algorithm developed is semi-automated; therefore, some statistical literacy is required to achieve optimal performance.

CONCLUSIONS

Following the objectives, this study found that timely, spatially disaggregate, real-time pandemic inference is feasible, and a system that assumes data as per pandemic preparedness plans has been developed for rapid implementation.

FUTURE WORK RECOMMENDATIONS

Modelling studies investigating the impact of pandemic interventions (e.g. vaccination and school closure); the utility of alternative data sources (e.g. internet searches) to augment traditional surveillance; and the correct handling of test sensitivity and specificity in serological data, propagating this uncertainty into the real-time modelling.

TRIAL REGISTRATION

Current Controlled Trials ISRCTN40334843.

FUNDING

This project was funded by the National Institute for Health Research (NIHR) Health Technology programme and will be published in full in ; Vol. 21, No. 58. See the NIHR Journals Library website for further project information. Daniela De Angelis was supported by the UK Medical Research Council (Unit Programme Number U105260566) and by PHE. She received funding under the NIHR grant for 10% of her time. The rest of her salary was provided by the MRC and PHE jointly.

摘要

背景

实时建模是英国应对大流行性流感爆发的公共卫生应对措施的重要组成部分。已经开发出一种基于现实传染病监测数据的传染病重建模型,但需要对其进行改进,以便在确保实时实施可行的同时提供空间上离散的传染病估计。

目的

通过(1)开发现有的传染病模型来捕捉传播过程中的空间变化,(2)设计有效的计算算法以提供及时的统计分析,(3)将上述内容纳入免费提供的软件,来推进实时大流行建模的最新技术。

方法

使用马尔可夫链蒙特卡罗(MCMC)抽样来使用来自两个候选建模方法的 2009 年大流行数据进行贝叶斯统计推断:(1)平行区域(PR)方法,将大流行分为发生在空间不相交区域的非交互性流行病;(2)元区域(MR)方法,将国家视为具有由关于通勤的人口普查数据提供的长程接触率的单个元种群。通过后验均值偏差统计以及更实际的考虑来进行模型区分。在实时上下文中,使用顺序蒙特卡罗(SMC)算法来执行实时分析被视为替代使用模拟数据的 MCMC 的方法,该模拟数据旨在严格测试两种算法。使用仿真数据比较 SMC 衍生分析与“黄金标准”MCMC 衍生推断在估计质量和计算负担方面的差异。

结果

PR 方法可以更好地及时拟合传染病数据。对感兴趣的大流行数量的估计在两种方法之间是一致的,并且在 PR 方法中,在各个地区之间也是一致的(例如,一致地估计为 1.76-1.80,在暑假期间下降 43-50%)。开发了一种 SMC 方法,该方法需要进行一些定制以解决由于大流行干预而导致的数据“冲击”。这种半自动 SMC 算法在估计精度和及时提供方面均优于 MCMC。

局限性

PR 模型缺乏在大流行早期阶段预测感染传播的预测能力,而 MR 模型可能受到对描述传播途径的通勤数据的依赖的限制。随着对资源的需求在严重的大流行中增加,来自普通实践和住院的数据可能变得不可靠或存在偏差。开发的 SMC 算法是半自动的;因此,需要一定的统计知识才能达到最佳性能。

结论

本研究根据目标发现,及时,空间离散,实时大流行推理是可行的,并且已经开发出一个系统,该系统可以根据大流行准备计划中的数据进行快速实施。

未来工作建议

对大流行干预措施(例如疫苗接种和学校关闭)的影响进行建模研究;替代数据源(例如互联网搜索)的实用性,以补充传统监测;以及正确处理血清学数据中的测试敏感性和特异性,并将这种不确定性纳入实时建模中。

试验注册

当前对照试验 ISRCTN40334843。

资金

该项目由英国国家卫生研究所(NIHR)健康技术计划资助,并将在 ; 第 21 卷,第 58 期全文发表。有关该项目的更多信息,请参见 NIHR 期刊库网站。Daniela De Angelis 得到了英国医学研究理事会(单位计划编号 U105260566)和 PHE 的支持。她在 NIHR 拨款下获得了 10%的时间。她的其余工资由 MRC 和 PHE 共同提供。

相似文献

1
Real-time modelling of a pandemic influenza outbreak.
Health Technol Assess. 2017 Oct;21(58):1-118. doi: 10.3310/hta21580.
3
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
5
A rapid mixed-methods evaluation of remote home monitoring models during the COVID-19 pandemic in England.
Health Soc Care Deliv Res. 2023 Jul;11(13):1-151. doi: 10.3310/FVQW4410.

引用本文的文献

1
Accuracy of State-Level Surveillance during Emerging Outbreaks of Respiratory Viruses: A Model-Based Assessment.
Med Decis Making. 2021 Nov;41(8):1004-1016. doi: 10.1177/0272989X211022276. Epub 2021 Jul 16.
2
Real-time nowcasting and forecasting of COVID-19 dynamics in England: the first wave.
Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20200279. doi: 10.1098/rstb.2020.0279. Epub 2021 May 31.
3
Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case.
PLoS One. 2020 Dec 3;15(12):e0242956. doi: 10.1371/journal.pone.0242956. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验