Weppelman I G C, Moerland R J, Hoogenboom J P, Kruit P
Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
Ultramicroscopy. 2018 Jan;184(Pt B):8-17. doi: 10.1016/j.ultramic.2017.10.002. Epub 2017 Oct 13.
We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses.
我们提出了一种通过将光电导开关与静电偏转器集成来产生超短电子脉冲的新方法。本文通过解析和数值计算讨论了这种系统的可行性。我们认为,对于消隐器的微米级尺寸,可以实现超快电子脉冲,这在基于微机电系统的制造技术中是可行的。根据基本模型,本文提出的设计能够产生空间分辨率小于10 nm的100 fs电子脉冲。我们的超快束流消隐器(UFB)概念可能为进行超快电子显微镜提供一种有吸引力的替代方案,因为它不需要对显微镜进行修改,也不需要在直流和脉冲操作模式之间重新对准。此外,只需要低激光脉冲能量。由于其尺寸小,UFB可以通过消隐器或可变孔径的标准入口端口插入商用显微镜的束线中。使用光电导开关可确保激光脉冲和电子脉冲之间的抖动最小。