Tahmasebi Nazanin, Boulanger Pierre, Punithakumar Kumaradevan
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:325-328. doi: 10.1109/EMBC.2017.8036828.
This study presents an accelerated implementation of a two-dimensional moving mesh point correspondence algorithm using a GPU for tracking mobile tumor boundaries during radiation therapy. Normal CPU implementation of this algorithm is computationally intensive and time-consuming which limits its clinical utility, hence the need for a faster GPU implementation. One of the computationally intensive parts of the registration algorithm involves numerically solving a partial differential equation. In this paper we demonstrate that the computational performance of the algorithms can be improved by utilizing a shared memory implementation on the GPU. Evaluations in comparison to 600 manually drawn contours showed that the proposed GPU-based tracking of the tumor boundaries yielded similar level of accuracy as the CPU based approach with improved computational efficiency.
本研究提出了一种使用图形处理器(GPU)加速实现二维移动网格点对应算法,用于在放射治疗期间跟踪移动肿瘤边界。该算法的常规中央处理器(CPU)实现计算量大且耗时,这限制了其临床应用,因此需要更快的GPU实现。配准算法中计算量较大的部分之一涉及数值求解一个偏微分方程。在本文中,我们证明了通过在GPU上采用共享内存实现,可以提高算法的计算性能。与600个手动绘制的轮廓相比进行的评估表明,所提出的基于GPU的肿瘤边界跟踪与基于CPU的方法具有相似的准确度水平,同时计算效率得到了提高。