Suppr超能文献

实现用于微生理学测定的3D肝细胞球体。

Enabling 3D hepatocyte spheroids for microphysiometry.

作者信息

Eggert S, Alexander F A, Wiest J

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1617-1620. doi: 10.1109/EMBC.2017.8037148.

Abstract

Advances in the areas of tissue engineering and microfabrication techniques have enabled promising in vitro platforms, known as Organs-on-Chips, with the aim of mimicking complex in vivo conditions for more accurate toxicology studies. To analyze the physiological change induced by chemicals or toxic substances continuously, sensors can be used in order to measure the intracellular and extracellular environment of single cells, cell constructs, or tissue, and therefore the integration of monitoring techniques into 3D tissue culture platforms provides an essential step for the next generation Organ-on-Chip platforms. However, current in vitro platforms are not capable of combining the culture of 3D models with monitoring techniques. To address this, a novel spheroid encapsulation is designed for fluidic contact between 3D models in microwells and Intelligent Mobile Lab for In Vitro Diagnostics (IMOLA-IVD) BioChip sensors while preventing spheroid fusion. In this work, spheroid culturing protocols were developed for optimized spheroid growth and an evaluation of spheroid integrity on different porous layers was performed in order to provide a defined spheroid encapsulation on BioChip sensors.

摘要

组织工程和微制造技术领域的进展催生了前景广阔的体外平台,即器官芯片,其目的是模拟复杂的体内条件,以进行更准确的毒理学研究。为了持续分析化学物质或有毒物质引起的生理变化,可以使用传感器来测量单细胞、细胞构建体或组织的细胞内和细胞外环境,因此将监测技术集成到3D组织培养平台是下一代器官芯片平台的关键一步。然而,当前的体外平台无法将3D模型的培养与监测技术相结合。为了解决这一问题,设计了一种新型球体封装,用于微阱中3D模型与体外诊断智能移动实验室(IMOLA-IVD)生物芯片传感器之间的流体接触,同时防止球体融合。在这项工作中,开发了球体培养方案以优化球体生长,并对不同多孔层上的球体完整性进行了评估,以便在生物芯片传感器上提供明确的球体封装。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验