Suppr超能文献

用于婴儿运动分析的深度图像中的人体姿态估计。

Body pose estimation in depth images for infant motion analysis.

作者信息

Hesse Nikolas, Schroder A Sebastian, Muller-Felber Wolfgang, Bodensteiner Christoph, Arens Michael, Hofmann Ulrich G

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1909-1912. doi: 10.1109/EMBC.2017.8037221.

Abstract

Motion analysis of infants is used for early detection of movement disorders like cerebral palsy. For the development of automated methods, capturing the infant's pose accurately is crucial. Our system for predicting 3D joint positions is based on a recently introduced pixelwise body part classifier using random ferns, to which we propose multiple enhancements. We apply a feature selection step before training random ferns to avoid the inclusion of redundant features. We introduce a kinematic chain reweighting scheme to identify and to correct misclassified pixels, and we achieve rotation invariance by performing PCA on the input depth image. The proposed methods improve pose estimation accuracy by a large margin on multiple recordings of infants. We demonstrate the suitability of the approach for motion analysis by comparing predicted knee angles to ground truth angles.

摘要

婴儿运动分析用于早期检测诸如脑瘫等运动障碍。对于自动化方法的开发,准确捕捉婴儿姿势至关重要。我们用于预测3D关节位置的系统基于最近引入的使用随机蕨类的逐像素身体部位分类器,我们对其提出了多种改进。我们在训练随机蕨类之前应用特征选择步骤,以避免包含冗余特征。我们引入了一种运动链重新加权方案来识别和纠正误分类的像素,并且通过对输入深度图像执行主成分分析(PCA)来实现旋转不变性。所提出的方法在婴儿的多个记录上大幅提高了姿势估计精度。我们通过将预测的膝盖角度与真实角度进行比较,证明了该方法适用于运动分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验