Suppr超能文献

使用基于可变形部件的模型检测视频数据中的婴儿运动障碍

Detection of Infantile Movement Disorders in Video Data Using Deformable Part-Based Model.

机构信息

Research Group for Pattern Recognition, University of Siegen, 57076 Siegen, Germany.

College of Information Technology, University of the Punjab, 54000 Lahore, Pakistan.

出版信息

Sensors (Basel). 2018 Sep 21;18(10):3202. doi: 10.3390/s18103202.

Abstract

Movement analysis of infants' body parts is momentous for the early detection of various movement disorders such as cerebral palsy. Most existing techniques are either marker-based or use wearable sensors to analyze the movement disorders. Such techniques work well for adults, however they are not effective for infants as wearing such sensors or markers may cause discomfort to them, affecting their natural movements. This paper presents a method to help the clinicians for the early detection of movement disorders in infants. The proposed method is marker-less and does not use any wearable sensors which makes it ideal for the analysis of body parts movement in infants. The algorithm is based on the deformable part-based model to detect the body parts and track them in the subsequent frames of the video to encode the motion information. The proposed algorithm learns a model using a set of part filters and spatial relations between the body parts. In particular, it forms a mixture of part-filters for each body part to determine its orientation which is used to detect the parts and analyze their movements by tracking them in the temporal direction. The model is represented using a tree-structured graph and the learning process is carried out using the structured support vector machine. The proposed framework will assist the clinicians and the general practitioners in the early detection of infantile movement disorders. The performance evaluation of the proposed method is carried out on a large dataset and the results compared with the existing techniques demonstrate its effectiveness.

摘要

分析婴儿身体部位的运动对于早期发现各种运动障碍(如脑瘫)非常重要。大多数现有的技术要么基于标记,要么使用可穿戴传感器来分析运动障碍。这些技术对成年人很有效,但对婴儿却不太有效,因为佩戴这样的传感器或标记可能会让他们感到不适,从而影响他们的自然运动。本文提出了一种帮助临床医生早期发现婴儿运动障碍的方法。该方法无需标记,也不使用任何可穿戴传感器,非常适合分析婴儿身体部位的运动。该算法基于可变形部件的模型来检测身体部位,并在视频的后续帧中跟踪它们,以编码运动信息。该算法使用一组部件滤波器和身体部位之间的空间关系来学习模型。特别是,它为每个身体部位形成一个部件滤波器的混合物,以确定其方向,用于通过在时间方向上跟踪它们来检测部件并分析它们的运动。该模型用树状结构的图表示,学习过程使用结构化支持向量机进行。所提出的框架将帮助临床医生和普通医生早期发现婴儿运动障碍。对所提出的方法进行了大量数据集的性能评估,并将结果与现有技术进行了比较,证明了其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afe4/6210538/31f5969d0e87/sensors-18-03202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验