Suppr超能文献

基于边际最大似然估计的表面肌电信号方差分布分析

Variance distribution analysis of surface EMG signals based on marginal maximum likelihood estimation.

作者信息

Furui Akira, Hayashi Hideaki, Kurita Yuichi, Tsuji Toshio

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2514-2517. doi: 10.1109/EMBC.2017.8037368.

Abstract

This paper describes the estimation and analysis of variance distribution of surface electromyogram (EMG) signals based on a stochastic EMG model. With the assumption that EMG signals at a certain time follow Gaussian distribution, their variance is handled as a random variable that follows inverse gamma distribution, and noise superimposed onto this variance can be expressed accordingly. The paper proposes variance distribution estimation based on marginal likelihood maximization of EMG signals. A simulation experiment using artificially generated signals to verify its accuracy indicated that the method can estimate variance distribution with high accuracy for a wide range of variance distribution shaping. Analysis of variance distribution using measured EMG signals revealed the relationship between muscle force and variance distribution involving signal-dependent noise.

摘要

本文描述了基于随机肌电图(EMG)模型的表面肌电信号方差分布的估计与分析。假设某一时刻的肌电信号服从高斯分布,将其方差作为服从逆伽马分布的随机变量来处理,叠加在该方差上的噪声也可相应表示。本文提出了基于肌电信号边际似然最大化的方差分布估计方法。使用人工生成信号进行的仿真实验验证了其准确性,结果表明该方法在广泛的方差分布形态范围内都能高精度地估计方差分布。利用实测肌电信号对方差分布进行分析,揭示了肌肉力量与包含信号相关噪声的方差分布之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验