Hayashi Hideaki, Furui Akira, Kurita Yuichi, Tsuji Toshio
Institute of Engineering, Hiroshima University, Higashi-hiroshima, Japan.
Graduate School of EngineeringHiroshima University.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2672-2681. doi: 10.1109/TBME.2017.2657121.
This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.
本文描述了一种能够表示肌电图(EMG)信号方差分布的表面肌电图模型的构建。在该模型中,基于高斯白噪声过程处理EMG信号,每个方差值的均值为零。EMG信号方差被视为服从逆伽马分布的随机变量,从而能够表示叠加在该方差上的噪声。本文还概述了基于边际似然最大化的方差分布估计。该过程可以使用整流和平滑后的EMG信号进行近似,从而能够以低计算成本实时确定分布参数。进行了一项模拟实验,以评估使用人工生成的EMG信号进行分布估计的准确性,结果表明所提出模型的准确性高于基于最大似然估计的模型。使用真实EMG数据对方差分布进行分析也表明方差分布与信号相关噪声之间存在关系。本文报道的这项研究旨在检验一种能够表示方差分布的表面EMG模型及相关分布参数估计方法的性能。使用人工和真实EMG数据进行的实验证明了该模型的有效性。使用所提出模型估计的方差分布在肌肉力量估计方面具有潜力。本文描述了一种能够表示肌电图(EMG)信号方差分布的表面肌电图模型的构建。在该模型中,基于高斯白噪声过程处理EMG信号,每个方差值的均值为零。EMG信号方差被视为服从逆伽马分布的随机变量,从而能够表示叠加在该方差上的噪声。本文还概述了基于边际似然最大化的方差分布估计。该过程可以使用整流和平滑后的EMG信号进行近似,从而能够以低计算成本实时确定分布参数。进行了一项模拟实验,以评估使用人工生成的EMG信号进行分布估计的准确性,结果表明所提出模型的准确性高于基于最大似然估计的模型。使用真实EMG数据对方差分布进行分析也表明方差分布与信号相关噪声之间存在关系。本文报道的这项研究旨在检验一种能够表示方差分布的表面EMG模型及相关分布参数估计方法的性能。使用人工和真实EMG数据进行的实验证明了该模型的有效性。使用所提出模型估计的方差分布在肌肉力量估计方面具有潜力。