Yousefi Ali, Kakooee Reza, Beheshti Mohammad T, Dougherty Darin D, Eskandar Emad N, Widge Alik S, Eden Uri T
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3194-3197. doi: 10.1109/EMBC.2017.8037536.
Multiple-Choice Decision-Making Tasks are widely used to analyze behavior and infer underlying cognitive states that shape the decision and learning processes. The behavioral signals recorded in these tasks are dynamic and often non-Gaussian - for instance, when learning a multiple choice association task. Previously developed estimation algorithms for latent behavioral variables do not address multiple-choice responses. In this research, we use a state-space modeling framework to predict a cognitive learning state related to multiple choice decisions, which are best described by a multinomial distribution. The proposed algorithm combines a multinomial filter/smoother and a variational Bayes technique to estimate the dynamics of a learning state vector. The algorithm is applied to decision response data recorded from non-human primates (NHPs) performing a Multiple-Choice Decision Task.
多项选择决策任务被广泛用于分析行为,并推断塑造决策和学习过程的潜在认知状态。在这些任务中记录的行为信号是动态的,并且通常是非高斯分布的——例如,在学习多项选择关联任务时。先前开发的用于潜在行为变量的估计算法并未涉及多项选择反应。在本研究中,我们使用状态空间建模框架来预测与多项选择决策相关的认知学习状态,多项选择决策最好用多项式分布来描述。所提出的算法结合了多项式滤波器/平滑器和变分贝叶斯技术来估计学习状态向量的动态变化。该算法应用于从执行多项选择决策任务的非人类灵长类动物(NHP)记录的决策反应数据。