Suppr超能文献

使用口腔内图像自动检测牙周炎。

Automatic detection of periodontitis using intra-oral images.

作者信息

Balaei Asghar Tabatabaei, de Chazal Philip, Eberhard Joerg, Domnisch Henrik, Spahr Axel, Ruiz Kate

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3906-3909. doi: 10.1109/EMBC.2017.8037710.

Abstract

Periodontitis is a chronic inflammatory disease of the supportive tissues and bone surrounding the teeth. In severe cases, it can consequently lead to tooth loss. This disease is most prevalent in rural and remote communities where regular dental visits are limited. Hence, there's a need for a periodontal screening tool for use by allied health professionals outside of dental clinics to detect periodontitis for early referral and intervention. In this paper two algorithms have been proposed and applied on two independently collected datasets in Germany and Australia with 20 and 24 participating subjects respectively; in the first algorithm, intra-oral images of before periodontitis treatment have been considered as diseased subjects and the images of after treatment have been considered as healthy subjects. Using the histogram of pixel intensity as our classification feature, the healthy and diseased subjects have been classified with an accuracy of 66.7%. In the second algorithm, using the difference between the histograms as our classification features, images of "before" and "after" treatment have been classified with an accuracy of 91.6%. If used in a smart phone application, the first algorithm can help people with limited access to dental clinics to be screened for periodontitis by allied health professionals in any healthcare setting. The second algorithm may be useful in helping non-dental personnel to monitor the progress of periodontal treatment.

摘要

牙周炎是一种发生在牙齿周围支持组织和骨骼的慢性炎症性疾病。在严重情况下,它可能会导致牙齿脱落。这种疾病在农村和偏远社区最为普遍,在这些地方定期看牙的机会有限。因此,需要一种牙周筛查工具,供牙科诊所以外的专职医疗人员使用,以便检测牙周炎,实现早期转诊和干预。在本文中,提出了两种算法,并分别应用于德国和澳大利亚独立收集的两个数据集,参与的受试者分别有20名和24名;在第一种算法中,将牙周炎治疗前的口腔内图像视为患病受试者,治疗后的图像视为健康受试者。以像素强度直方图作为分类特征,对健康和患病受试者进行分类,准确率为66.7%。在第二种算法中,以直方图之间的差异作为分类特征,对治疗“前”和“后”的图像进行分类,准确率为91.6%。如果应用于智能手机应用程序,第一种算法可以帮助那些看牙机会有限的人,由任何医疗环境中的专职医疗人员对其进行牙周炎筛查。第二种算法可能有助于非牙科人员监测牙周治疗的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验