Suppr超能文献

微纳结构无碳硫化铁作为先进的高压实密度可充电电池负极材料。

Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries.

机构信息

Department of Energy Engineering, Hanyang University , Seoul 133-791, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39416-39424. doi: 10.1021/acsami.7b13239. Epub 2017 Nov 1.

Abstract

Numerous materials have been considered as promising electrode materials for rechargeable batteries; however, developing efficient materials to achieving good cycling performance and high volumetric energy capacity simultaneously remains a great challenge. Considering the appealing properties of iron sulfides, which include low cost, high theoretical capacity, and favorable electrochemical conversion mechanism, in this work, we demonstrate the feasibility of carbon-free microscale FeS as high-efficiency anode materials for rechargeable batteries by designing hierarchical intertexture architecture. The as-prepared intertexture FeS microspheres constructed from nanoscale units take advantage of both the long cycle life of nanoscale units and the high tap density (1.13 g cm) of the micro-intertexture FeS. As a result, high capacities of 1089.2 mA h g (1230.8 mA h cm) and 624.7 mA h g (705.9 mA h cm) were obtained after 100 cycles at 1 A g in Li-ion and Na-ion batteries, respectively, demonstrating one of the best performances for iron sulfide-based electrodes. Even after deep cycling at 20 A g, satisfactory capacities could be retained. Related results promote the practical application of metal sulfides as high-capacity electrodes with high rate capability for next-generation rechargeable batteries.

摘要

已经有许多材料被认为是有前途的可充电电池电极材料;然而,开发高效的材料以同时实现良好的循环性能和高体积能量容量仍然是一个巨大的挑战。考虑到硫化铁具有成本低、理论容量高、电化学转化机制良好等诱人特性,在这项工作中,我们通过设计分级交织结构,展示了无碳微尺度 FeS 作为可充电电池高效阳极材料的可行性。所制备的由纳米级单元组成的交织 FeS 微球利用了纳米级单元的长循环寿命和微交织 FeS 的高振实密度(1.13 g cm)。结果,在锂离子和钠离子电池中以 1 A g 的电流循环 100 次后,分别获得了 1089.2 mA h g(1230.8 mA h cm)和 624.7 mA h g(705.9 mA h cm)的高容量,这是基于硫化铁的电极的最佳性能之一。即使在 20 A g 的深度循环后,仍可保持令人满意的容量。相关结果推动了金属硫化物作为下一代可充电电池具有高倍率能力的高容量电极的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验