Suppr超能文献

具有k立方自旋轨道耦合的二维费米子系统的电学和热电输运性质。

Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

作者信息

Mawrie Alestin, Verma Sonu, Ghosh Tarun Kanti

机构信息

Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208 016, India.

出版信息

J Phys Condens Matter. 2017 Nov 22;29(46):465303. doi: 10.1088/1361-648X/aa89b9. Epub 2017 Oct 25.

Abstract

We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions [Formula: see text] with [Formula: see text]. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

摘要

我们研究了k立方自旋轨道相互作用对二维费米子系统电学和热电输运性质的影响。对于长程库仑和短程δ散射势,我们得到了逆弛豫时间(IRT)和德鲁德电导率的精确解析表达式。IRT表明,对于[公式:见正文],散射在三个方向[公式:见正文]上被完全抑制。我们还得到了低温下热电势和热导率的解析结果。即使在低温下存在k立方 Rashba 自旋轨道相互作用(RSOI)时,热电输运系数也服从维德曼-夫兰兹定律。在存在量子化磁场的情况下,通过在低磁场区域热电势和热导率的舒布尼科夫-德哈斯(SdH)振荡中出现拍频图案,揭示了RSOI的特征。SdH振荡频率的经验公式准确地描述了拍频节点的位置。磁热电测量中的拍频图案可用于提取自旋轨道耦合常数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验