Center for Atomic-Scale Materials Design (CAMD), Department of Physics, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark.
Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster , 48149 Münster, Germany.
Nano Lett. 2017 Nov 8;17(11):6833-6837. doi: 10.1021/acs.nanolett.7b03111. Epub 2017 Oct 30.
One- and two-dimensional materials are being intensively investigated due to their interesting properties for next-generation optoelectronic devices. Among these, armchair-edged graphene nanoribbons are very promising candidates with optical properties that are dominated by excitons. In the presence of additional charges, trions (i.e., charged excitons) can occur in the optical spectrum. With our recently developed first-principle many-body approach (Phys. Rev. Lett. 116, 196804), we predict strongly bound trions in free-standing nanoribbons with large binding energies of 140-660 meV for widths of 14.6-3.6 Å. Both for the trions and for the excitons, we observe an almost linear dependency of their binding energies on the band gap. We observe several trion states with different character derived from the corresponding excitons. Because of the large bindings energies, this opens a route to applications by which optical properties are easily manipulated, for example, by electrical fields.
由于其在下一代光电器件中的有趣性质,一维和二维材料受到了广泛的研究。在这些材料中,扶手椅边缘石墨烯纳米带是非常有前途的候选材料,其光学性质主要由激子决定。在存在额外电荷的情况下,在光学光谱中会出现三电子(即带电激子)。利用我们最近开发的第一性原理多体方法(Phys. Rev. Lett. 116, 196804),我们预测在自由-standing 纳米带中会出现强束缚的三电子,其结合能对于宽度为 14.6-3.6 Å 的纳米带来说,结合能为 140-660 meV。对于三电子和激子,我们观察到它们的结合能几乎呈线性依赖于能带隙。我们观察到几个具有不同特性的三电子态,这些三电子态来源于相应的激子。由于结合能较大,这为通过电场等手段轻松控制光学性质的应用开辟了途径。