Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.
Brain Imaging Behav. 2019 Apr;13(2):314-322. doi: 10.1007/s11682-017-9779-7.
The mesocorticolimbic dopamine (DA) circuit, comprising the mesolimbic and mesocortical DA pathways, plays a crucial role in reward, cognitive control, and motivation. The positron emission tomography (PET) radiotracer, [C-11]raclopride, has been used widely to image DA receptors and DA changes in the mesolimbic pathway before and after pharmacological and behavioral challenges. In certain circumstances, properties of traditional kinetic models-used to analyze dynamic PET data-are not well-suited to describing the effects of stimulus-induced DA release. To combat model shortcomings, the authors have advanced a suite of models that characterizes PET data in the presence of time-varying DA release. We review select [C-11]raclopride studies of the striatum during cigarette smoking to illustrate the advantages of such models. DA receptors occur in lower density in the cortex than the striatum. This, as well as higher relative background signal, poses a serious challenge to quantitative PET of DA changes in the mesocortical system. Novel high affinity radioligands [F-18]fallypride and [C-11]FLB457 have been used to image mesocortical DA transmission. Models with time-varying terms may also hold the key to optimizing sensitivity to changes in mesocortical DA. As an illustration, we compare recent PET studies of the effect of stress on cortical DA release. Finally, we consider some challenges and strategies for further optimization of sensitivity of PET to stimulus-induced DA changes throughout the whole brain.
中脑边缘多巴胺(DA)回路,包括中脑边缘和中脑皮质 DA 通路,在奖励、认知控制和动机中发挥着关键作用。正电子发射断层扫描(PET)示踪剂[C-11]raclopride 已广泛用于在药物和行为挑战前后对中脑边缘途径中的 DA 受体和 DA 变化进行成像。在某些情况下,用于分析动态 PET 数据的传统动力学模型的特性不适合描述刺激诱导的 DA 释放的影响。为了克服模型的缺点,作者提出了一系列模型,这些模型可以描述存在时变 DA 释放时的 PET 数据。我们回顾了一些选择的[C-11]raclopride 研究,以说明这些模型的优势。在纹状体中,DA 受体的密度低于皮层。这以及更高的相对背景信号,对中脑皮质系统中 DA 变化的定量 PET 提出了严重的挑战。新型高亲和力放射性配体[F-18]fallypride 和[C-11]FLB457 已被用于成像中脑皮质 DA 传递。具有时变项的模型也可能是优化中脑皮质 DA 变化敏感性的关键。作为说明,我们比较了最近的 PET 研究,这些研究探讨了应激对皮质 DA 释放的影响。最后,我们考虑了一些挑战和策略,以进一步优化整个大脑中刺激诱导的 DA 变化的 PET 敏感性。