Suppr超能文献

用于检测未知时间的局部、短暂多巴胺释放的体素级lp-ntPET:灵敏度分析及其在PET扫描仪中对吸烟的应用

Voxelwise lp-ntPET for detecting localized, transient dopamine release of unknown timing: sensitivity analysis and application to cigarette smoking in the PET scanner.

作者信息

Kim Su Jin, Sullivan Jenna M, Wang Shuo, Cosgrove Kelly P, Morris Evan D

机构信息

Yale PET Center, Yale University, New Haven, Connecticut; Department of Diagnostic Radiology, Yale University, New Haven, Connecticut.

出版信息

Hum Brain Mapp. 2014 Sep;35(9):4876-91. doi: 10.1002/hbm.22519. Epub 2014 Apr 3.

Abstract

The "linear parametric neurotransmitter PET" (lp-ntPET) model estimates time variation in endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change over time may be an important element of the brain's response to addictive substances such as cigarettes or alcohol. We have extended the lp-ntPET model from the original region of interest (ROI) - based implementation to be able to apply the model at the voxel level. The resulting endpoint is a dynamic image, or movie, of transient neurotransmitter changes. Simulations were performed to select threshold values to reduce the false positive rate when applied to real (11)C-raclopride PET data. We tested the new voxelwise method on simulated data, and finally, we applied it to (11)C-raclopride PET data of subjects smoking cigarettes in the PET scanner. In simulation, the temporal precision of neurotransmitter response was shown to be similar to that of ROI-based lp-ntPET (standard deviation ∼ 3 min). False positive rates for the voxelwise method were well controlled by combining a statistical threshold (the F-test) with a new spatial (cluster-size) thresholding operation. Sensitivity of detection for the new algorithm was greater than 80% for the case of short-lived DA changes that occur in subregions of the striatum as might be the case with cigarette smoking. Finally, in (11)C-raclopride PET data, DA movies reveal for the first time that different temporal patterns of the DA response to smoking may exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change created by voxelwise lp-ntPET may serve as novel biomarkers for addiction and/or treatment efficacy.

摘要

“线性参数神经递质正电子发射断层扫描”(lp-ntPET)模型可根据动态正电子发射断层扫描(PET)数据估算内源性神经递质水平随时间的变化。多巴胺(DA)随时间的变化模式可能是大脑对香烟或酒精等成瘾物质反应的一个重要因素。我们已将lp-ntPET模型从最初基于感兴趣区域(ROI)的实现方式进行了扩展,使其能够在体素水平应用该模型。最终得到的是一个关于神经递质瞬态变化的动态图像或影像。进行了模拟以选择阈值,从而在应用于真实的(11)C-雷氯必利PET数据时降低假阳性率。我们在模拟数据上测试了这种新的体素级方法,最后将其应用于在PET扫描仪中吸烟的受试者的(11)C-雷氯必利PET数据。在模拟中,神经递质反应的时间精度与基于ROI的lp-ntPET相似(标准差约为3分钟)。通过将统计阈值(F检验)与新的空间(簇大小)阈值操作相结合,体素级方法的假阳性率得到了很好的控制。对于纹状体子区域中可能发生的短暂DA变化(如吸烟时的情况),新算法的检测灵敏度大于80%。最后,在(11)C-雷氯必利PET数据中,DA影像首次揭示,纹状体不同子区域对吸烟的DA反应可能存在不同的时间模式。由体素级lp-ntPET创建的这些神经递质变化的时空模式可能成为成瘾和/或治疗效果的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef2/6869831/ba9210754a7b/HBM-35-4876-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验