Zhao Yan-Yong, Lin Jin-Guan, Ye Xu-Guo, Wang Hong-Xia, Huang Xing-Fang
Department of Statistics, Nanjing Audit University, Nanjing, 211815, P. R., China.
School of Mathematical Sciences, Kaili University, Kaili, 556011, P. R., China.
Biom J. 2018 Jan;60(1):79-99. doi: 10.1002/bimj.201500215. Epub 2017 Oct 26.
Semiparametric smoothing methods are usually used to model longitudinal data, and the interest is to improve efficiency for regression coefficients. This paper is concerned with the estimation in semiparametric varying-coefficient models (SVCMs) for longitudinal data. By the orthogonal projection method, local linear technique, quasi-score estimation, and quasi-maximum likelihood estimation, we propose a two-stage orthogonality-based method to estimate parameter vector, coefficient function vector, and covariance function. The developed procedures can be implemented separately and the resulting estimators do not affect each other. Under some mild conditions, asymptotic properties of the resulting estimators are established explicitly. In particular, the asymptotic behavior of the estimator of coefficient function vector at the boundaries is examined. Further, the finite sample performance of the proposed procedures is assessed by Monte Carlo simulation experiments. Finally, the proposed methodology is illustrated with an analysis of an acquired immune deficiency syndrome (AIDS) dataset.
半参数平滑方法通常用于对纵向数据进行建模,目的是提高回归系数的估计效率。本文关注纵向数据的半参数变系数模型(SVCMs)中的估计问题。通过正交投影法、局部线性技术、拟得分估计和拟极大似然估计,我们提出了一种基于正交性的两阶段方法来估计参数向量、系数函数向量和协方差函数。所开发的步骤可以分别实施,所得估计量互不影响。在一些温和条件下,明确建立了所得估计量的渐近性质。特别地,研究了系数函数向量估计量在边界处的渐近行为。此外,通过蒙特卡罗模拟实验评估了所提步骤的有限样本性能。最后,通过对一个获得性免疫缺陷综合征(艾滋病)数据集的分析来说明所提方法。