Qu Annie, Li Runze
Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA.
Biometrics. 2006 Jun;62(2):379-91. doi: 10.1111/j.1541-0420.2005.00490.x.
Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this article, we propose an efficient estimation procedure for varying-coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and deal directly with both continuous and discrete response longitudinal data under the framework of generalized linear models. The proposed approach yields a more efficient estimator than the generalized estimation equation approach when the working correlation is misspecified. For varying-coefficient models, it is often of interest to test whether coefficient functions are time varying or time invariant. We propose a unified and efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test statistics have an asymptotic chi-squared distribution. In addition, the goodness-of-fit test is applied to test whether the model assumption is satisfied. The corresponding test is also useful for choosing basis functions and the number of knots for regression spline models in conjunction with the model selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte Carlo simulation studies. The proposed methodology is illustrated by the analysis of an acquired immune deficiency syndrome (AIDS) data set.
非参数平滑方法用于对纵向数据进行建模,但如何将相关性纳入非参数估计过程仍是一个挑战。在本文中,我们提出了一种用于纵向数据变系数模型的有效估计方法。所提出的方法能够轻松考虑个体内部的相关性,并在广义线性模型框架下直接处理连续和离散响应的纵向数据。当工作相关性设定错误时,所提出的方法比广义估计方程方法能产生更有效的估计量。对于变系数模型,通常有必要检验系数函数是随时间变化还是时间不变的。我们提出了一种统一且有效的非参数假设检验方法,并进一步证明所得检验统计量具有渐近卡方分布。此外,拟合优度检验用于检验模型假设是否成立。该相应检验结合模型选择准则,对于选择回归样条模型的基函数和节点数也很有用。我们通过蒙特卡罗模拟研究评估所提出方法的有限样本性能。通过对一个获得性免疫缺陷综合征(艾滋病)数据集的分析来说明所提出的方法。