Techa-Angkoon Prapaporn, Sun Yanni, Lei Jikai
Department of Computer Science and Engineering, Michigan State University, East Lansing, 48824, MI, USA.
BMC Bioinformatics. 2017 Oct 16;18(Suppl 12):414. doi: 10.1186/s12859-017-1826-2.
Homology search is still a significant step in functional analysis for genomic data. Profile Hidden Markov Model-based homology search has been widely used in protein domain analysis in many different species. In particular, with the fast accumulation of transcriptomic data of non-model species and metagenomic data, profile homology search is widely adopted in integrated pipelines for functional analysis. While the state-of-the-art tool HMMER has achieved high sensitivity and accuracy in domain annotation, the sensitivity of HMMER on short reads declines rapidly. The low sensitivity on short read homology search can lead to inaccurate domain composition and abundance computation. Our experimental results showed that half of the reads were missed by HMMER for a RNA-Seq dataset. Thus, there is a need for better methods to improve the homology search performance for short reads.
We introduce a profile homology search tool named Short-Pair that is designed for short paired-end reads. By using an approximate Bayesian approach employing distribution of fragment lengths and alignment scores, Short-Pair can retrieve the missing end and determine true domains. In particular, Short-Pair increases the accuracy in aligning short reads that are part of remote homologs. We applied Short-Pair to a RNA-Seq dataset and a metagenomic dataset and quantified its sensitivity and accuracy on homology search. The experimental results show that Short-Pair can achieve better overall performance than the state-of-the-art methodology of profile homology search.
Short-Pair is best used for next-generation sequencing (NGS) data that lack reference genomes. It provides a complementary paired-end read homology search tool to HMMER. The source code is freely available at https://sourceforge.net/projects/short-pair/ .
同源性搜索仍是基因组数据功能分析中的重要步骤。基于轮廓隐马尔可夫模型的同源性搜索已广泛应用于许多不同物种的蛋白质结构域分析。特别是,随着非模式物种转录组数据和宏基因组数据的快速积累,轮廓同源性搜索在功能分析的集成流程中被广泛采用。虽然最先进的工具HMMER在结构域注释方面已实现了高灵敏度和准确性,但HMMER对短读段的灵敏度会迅速下降。短读段同源性搜索的低灵敏度会导致结构域组成和丰度计算不准确。我们的实验结果表明,对于一个RNA测序数据集,HMMER遗漏了一半的读段。因此,需要更好的方法来提高短读段的同源性搜索性能。
我们引入了一种名为Short-Pair的轮廓同源性搜索工具,它专为短双端读段设计。通过使用一种采用片段长度分布和比对分数的近似贝叶斯方法,Short-Pair可以找回缺失的末端并确定真正的结构域。特别是,Short-Pair提高了对作为远缘同源物一部分的短读段进行比对的准确性。我们将Short-Pair应用于一个RNA测序数据集和一个宏基因组数据集,并对其在同源性搜索方面的灵敏度和准确性进行了量化。实验结果表明,Short-Pair在整体性能上优于最先进的轮廓同源性搜索方法。
Short-Pair最适用于缺乏参考基因组的下一代测序(NGS)数据。它为HMMER提供了一个互补的双端读段同源性搜索工具。源代码可在https://sourceforge.net/projects/short-pair/ 上免费获取。