Bu Hongda, Gan Yanglan, Wang Yang, Zhou Shuigeng, Guan Jihong
Department of Computer Science and Technology, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China.
School of Computer, Donghua University, 2999 Renming North Road, Shanghai, 201620, China.
BMC Bioinformatics. 2017 Oct 16;18(Suppl 12):418. doi: 10.1186/s12859-017-1828-0.
Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the high-throughout ChiP-seq technologies development, several computational techniques emerge to predict enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across different cell-lines and the unsatisfactory prediction performance call for further research in this area.
Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction, which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant features for enhancer prediction.
Deep learning is effective in boosting the performance of enhancer prediction.
研究表明,增强子是在基因表达调控中发挥关键作用的重要调控元件。由于增强子与其靶基因的方向和距离无关,准确预测远端增强子对学者和研究人员来说是一项具有挑战性的任务。在过去几年中,随着高通量ChIP-seq技术的发展,出现了几种利用表观遗传或基因组特征预测增强子的计算技术。然而,不同细胞系中计算模型的不一致性以及不尽人意的预测性能要求在该领域进行进一步研究。
在此,我们提出了一种基于深度信念网络(DBN)的增强子预测新计算方法,称为EnhancerDBN。该方法结合了多种特征,包括DNA序列组成特征、DNA甲基化和组蛋白修饰。我们的计算结果表明:1)EnhancerDBN在预测方面优于13种现有方法;2)GC含量和DNA甲基化可作为增强子预测的相关特征。
深度学习在提高增强子预测性能方面是有效的。