Suppr超能文献

基于频域快速反投影算法的精确孔径相关运动补偿

Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.

作者信息

Zhang Man, Wang Guanyong, Zhang Lei

机构信息

School of Software, Xidian University, Xi'an 710071, China.

National Laboratory of Radar Signal Processing, Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi'an 710071, China.

出版信息

Sensors (Basel). 2017 Oct 26;17(11):2454. doi: 10.3390/s17112454.

Abstract

Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

摘要

精确的方位向变运动补偿(MOCO)是高分辨率合成孔径雷达(SAR)成像中的一项重要且困难的任务。在传统的后置滤波方法中,残余方位向变运动误差通常通过一组空间后置滤波器进行补偿,其中粗聚焦图像根据与方位相关的残余误差被分割成重叠块。然而,图像域后置滤波方法,如精确地形和孔径相关运动补偿算法(PTA),当粗聚焦图像中存在强烈运动误差时,在鲁棒性方面存在下降的困难。在这种情况下,为了在每个图像块内捕获完整的运动模糊函数,块大小和重叠部分都需要必要的扩展,这不可避免地导致效率和鲁棒性的退化。在此,引入一种频域快速反投影算法(FDFBPA)来处理强烈的方位向变运动误差。FDFBPA基于方位波数域中的精确方位频谱表达式来处理方位向变运动误差。首先,引入波数域子孔径处理策略以加速计算。之后,将方位波数谱划分为一组波数块,并且每个块通过反投影积分形成子孔径粗分辨率图像。然后,子孔径图像在方位波数域中直接融合在一起以获得全分辨率图像。此外,还引入了线性调频Z变换(CZT)来实现子孔径反投影积分,提高了算法的效率。通过摒弃图像域后置滤波策略,提高了所提算法的鲁棒性。仿真和实测数据实验均证明了该方法的有效性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7219/5712856/90d316bcfb1f/sensors-17-02454-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验