Yokoyama Kenichi
Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States.
Biochemistry. 2018 Jan 30;57(4):390-402. doi: 10.1021/acs.biochem.7b00878. Epub 2017 Nov 9.
The radical SAM (S-adenosyl-l-methionine) superfamily is one of the largest group of enzymes with >113000 annotated sequences [Landgraf, B. J., et al. (2016) Annu. Rev. Biochem. 85, 485-514]. Members of this superfamily catalyze the reductive cleavage of SAM using an oxygen sensitive 4Fe-4S cluster to transiently generate 5'-deoxyadenosyl radical that is subsequently used to initiate diverse free radical-mediated reactions. Because of the unique reactivity of free radicals, radical SAM enzymes frequently catalyze chemically challenging reactions critical for the biosynthesis of unique structures of cofactors and natural products. In this Perspective, I will discuss the impact of characterizing novel functions in radical SAM enzymes on our understanding of biosynthetic pathways and use two recent examples from my own group with a particular emphasis on two radical SAM enzymes that are responsible for carbon skeleton formation during the biosynthesis of a cofactor and natural products.
自由基S-腺苷甲硫氨酸(SAM)超家族是最大的酶类群之一,有超过113000条注释序列[兰德格拉夫,B. J.等人(2016年)《生物化学年度评论》85卷,485 - 514页]。该超家族成员利用对氧敏感的4Fe - 4S簇催化SAM的还原裂解,以瞬时生成5'-脱氧腺苷自由基,随后用于引发各种自由基介导的反应。由于自由基具有独特的反应活性,自由基SAM酶经常催化对辅因子和天然产物独特结构的生物合成至关重要的具有化学挑战性的反应。在这篇综述中,我将讨论鉴定自由基SAM酶新功能对我们理解生物合成途径的影响,并以我自己团队最近的两个例子进行说明,特别强调两种负责在辅因子和天然产物生物合成过程中形成碳骨架的自由基SAM酶。