Suppr超能文献

天然产物与辅因子生物合成的重大突破

Radical Breakthroughs in Natural Product and Cofactor Biosynthesis.

作者信息

Yokoyama Kenichi

机构信息

Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States.

出版信息

Biochemistry. 2018 Jan 30;57(4):390-402. doi: 10.1021/acs.biochem.7b00878. Epub 2017 Nov 9.

Abstract

The radical SAM (S-adenosyl-l-methionine) superfamily is one of the largest group of enzymes with >113000 annotated sequences [Landgraf, B. J., et al. (2016) Annu. Rev. Biochem. 85, 485-514]. Members of this superfamily catalyze the reductive cleavage of SAM using an oxygen sensitive 4Fe-4S cluster to transiently generate 5'-deoxyadenosyl radical that is subsequently used to initiate diverse free radical-mediated reactions. Because of the unique reactivity of free radicals, radical SAM enzymes frequently catalyze chemically challenging reactions critical for the biosynthesis of unique structures of cofactors and natural products. In this Perspective, I will discuss the impact of characterizing novel functions in radical SAM enzymes on our understanding of biosynthetic pathways and use two recent examples from my own group with a particular emphasis on two radical SAM enzymes that are responsible for carbon skeleton formation during the biosynthesis of a cofactor and natural products.

摘要

自由基S-腺苷甲硫氨酸(SAM)超家族是最大的酶类群之一,有超过113000条注释序列[兰德格拉夫,B. J.等人(2016年)《生物化学年度评论》85卷,485 - 514页]。该超家族成员利用对氧敏感的4Fe - 4S簇催化SAM的还原裂解,以瞬时生成5'-脱氧腺苷自由基,随后用于引发各种自由基介导的反应。由于自由基具有独特的反应活性,自由基SAM酶经常催化对辅因子和天然产物独特结构的生物合成至关重要的具有化学挑战性的反应。在这篇综述中,我将讨论鉴定自由基SAM酶新功能对我们理解生物合成途径的影响,并以我自己团队最近的两个例子进行说明,特别强调两种负责在辅因子和天然产物生物合成过程中形成碳骨架的自由基SAM酶。

相似文献

1
Radical Breakthroughs in Natural Product and Cofactor Biosynthesis.
Biochemistry. 2018 Jan 30;57(4):390-402. doi: 10.1021/acs.biochem.7b00878. Epub 2017 Nov 9.
2
Lessons From the Studies of a CC Bond Forming Radical SAM Enzyme in Molybdenum Cofactor Biosynthesis.
Methods Enzymol. 2018;606:485-522. doi: 10.1016/bs.mie.2018.04.014. Epub 2018 Jun 1.
3
Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12870-5. doi: 10.1073/pnas.0404624101. Epub 2004 Aug 18.
4
Binding of 5'-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism.
Proc Natl Acad Sci U S A. 2006 May 2;103(18):6829-34. doi: 10.1073/pnas.0510711103. Epub 2006 Apr 21.
5
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6347-52. doi: 10.1073/pnas.1500697112. Epub 2015 May 4.
6
7-Carboxy-7-deazaguanine Synthase: A Radical S-Adenosyl-l-methionine Enzyme with Polar Tendencies.
J Am Chem Soc. 2017 Feb 8;139(5):1912-1920. doi: 10.1021/jacs.6b11381. Epub 2017 Jan 25.
7
Auxiliary iron-sulfur cofactors in radical SAM enzymes.
Biochim Biophys Acta. 2015 Jun;1853(6):1316-34. doi: 10.1016/j.bbamcr.2015.01.002. Epub 2015 Jan 15.
9
C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.
J Am Chem Soc. 2015 Mar 11;137(9):3352-9. doi: 10.1021/ja512997j. Epub 2015 Mar 2.
10
Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis.
J Biol Chem. 2004 Aug 13;279(33):34721-32. doi: 10.1074/jbc.M313398200. Epub 2004 Jun 4.

引用本文的文献

1
Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions.
Chem Rev. 2018 Jul 25;118(14):6573-6655. doi: 10.1021/acs.chemrev.8b00031. Epub 2018 Jun 22.
2
Following the electrons: peculiarities in the catalytic cycles of radical SAM enzymes.
Nat Prod Rep. 2018 Jul 18;35(7):615-621. doi: 10.1039/c7np00058h.

本文引用的文献

2
Radical new paradigm for heme degradation in Escherichia coli O157:H7.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12138-12143. doi: 10.1073/pnas.1603209113. Epub 2016 Oct 10.
3
Carbon extension in peptidylnucleoside biosynthesis by radical SAM enzymes.
Nat Chem Biol. 2016 Nov;12(11):905-907. doi: 10.1038/nchembio.2187. Epub 2016 Sep 19.
4
Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.
Science. 2016 May 13;352(6287):822-5. doi: 10.1126/science.aaf5327. Epub 2016 May 12.
5
Radical S-Adenosylmethionine Enzymes in Human Health and Disease.
Annu Rev Biochem. 2016 Jun 2;85:485-514. doi: 10.1146/annurev-biochem-060713-035504. Epub 2016 May 4.
6
Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue.
Biochemistry. 2015 Dec 15;54(49):7229-36. doi: 10.1021/acs.biochem.5b00857. Epub 2015 Dec 1.
8
Anaerobic biosynthesis of the lower ligand of vitamin B12.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10792-7. doi: 10.1073/pnas.1509132112. Epub 2015 Aug 5.
9
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6347-52. doi: 10.1073/pnas.1500697112. Epub 2015 May 4.
10
C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.
J Am Chem Soc. 2015 Mar 11;137(9):3352-9. doi: 10.1021/ja512997j. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验