Suppr超能文献

双通道、分子筛核/壳 ZIF@MOF 结构作为杂化膜中的工程化填充剂用于高选择性 CO 分离。

Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO Separation.

机构信息

The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States.

出版信息

Nano Lett. 2017 Nov 8;17(11):6752-6758. doi: 10.1021/acs.nanolett.7b02910. Epub 2017 Oct 30.

Abstract

A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH, pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N molecules (kinetic diameter, 0.364 nm) from smaller CO molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO separation performance by simultaneously increasing CO permeability (CO permeability of 45.2 barrer, 710% higher than PSF membrane) and CO/N selectivity (CO/N selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using dual-channel molecular sieving core/shell porous crystals in hybrid membranes thus provides a promising means for CO capture from flue gas.

摘要

采用层层沉积法,以大孔金属有机骨架(MOF,UiO-66-NH,孔径约为 0.6nm)为核,周围包裹小孔沸石咪唑酯骨架(ZIF,ZIF-8,孔径约为 0.4nm),制备了一种新型核壳多孔晶体结构。随后,将其作为工程化填料用于构建用于 CO 捕集的混合聚砜(PSF)膜。与传统的仅利用具有刚性通道的单一类型多孔材料(大孔或小孔)的填料相比,我们设计的核壳结构填料通过孔工程具有明显的优势:UiO-66-NH MOFs 的大内部通道为分子提供了高速公路,从而加速了分子在膜中的传输,而具有小孔(ZIF-8)的薄壳或甚至在 ZIF 和 MOF 的重叠孔之间不完全对准而在界面处生成的更小的孔增强了分子筛分,从而能够区分稍大的 N 分子(动力学直径为 0.364nm)和较小的 CO 分子(动力学直径为 0.33nm)。通过透射电子显微镜、X 射线衍射、广角 X 射线散射、扫描电子显微镜、傅里叶变换红外、热重分析、差示扫描量热法和接触角测试对核壳 ZIF@MOF 和所制备的混合 PSF 膜进行了表征。还通过改变 ZIF 涂层的层数来研究膜的分离性能对 MOF/ZIF 比的依赖性。具有优化 ZIF 涂层循环的集成 PSF-ZIF@MOF 混合膜(40wt%负载)显示出改善的疏水性和优异的 CO 分离性能,同时提高了 CO 渗透性(CO 渗透性为 45.2 巴雷,比 PSF 膜高 710%)和 CO/N 选择性(CO/N 选择性为 39,比 PSF 膜高 50%),优于大多数报道的混合 PSF 膜。因此,在混合膜中使用双通道分子筛核壳多孔晶体的策略为从烟道气中捕集 CO 提供了一种很有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验