Suppr超能文献

纳米尺度边缘的体混溶性。

Bulk Immiscibility at the Edge of the Nanoscale.

机构信息

Department of Materials Science and Engineering, McMaster University , Hamilton, ON L8S 4L8, Canada.

Department of Mechanical and Materials Engineering, Queen's University , Kingston, ON K7L 3N6, Canada.

出版信息

ACS Nano. 2017 Nov 28;11(11):10984-10991. doi: 10.1021/acsnano.7b04888. Epub 2017 Oct 26.

Abstract

In the quest to identify more effective catalyst nanoparticles for many industrially important applications, the Au-Pt system has gathered considerable attention. Despite considerable effort the interplay between phase equilibrium behavior and surface segregation in Au-Pt nanoparticles is still poorly understood. Here we investigate the phase equilibrium behavior of 20 nm Au-Pt nanoparticles using a combination of high-resolution scanning transmission electron microscopy and a hybrid Monte Carlo and molecular dynamics atomistic simulation technique. Our approach takes into account the effects of immiscibility, elastic strain, interfacial free energy, and surface segregation. This is used to explain two key phenomena taking place in these nanoparticles. The first is whether the binary system remains immiscible at the nanoscale, and if so what morphology would the secondary phase take. Our findings suggest that even at sizes of 20 nm, thermally equilibrated Au-Pt nanoparticles remain largely immiscible and behave thermodynamically as bulk-like systems. We explain why 20 nm Au-Pt nanoparticles phase separate into hemispheres as opposed to a thick-shelled core-shell structure. These insights are central to further optimization of Au-Pt nanoparticles toward enhanced catalytic activities. The phase-separated Janus particles observed in this study offer enhanced material functionality arising from the nonuniformity of their plasmonic, catalytic, and surface properties.

摘要

在寻求更有效的催化剂纳米粒子以应用于许多工业重要领域的过程中,Au-Pt 体系引起了广泛关注。尽管已经付出了相当大的努力,但 Au-Pt 纳米粒子中的相平衡行为和表面偏析之间的相互作用仍然理解得很差。在这里,我们使用高分辨率扫描透射电子显微镜和混合蒙特卡罗和分子动力学原子模拟技术研究了 20nm Au-Pt 纳米粒子的相平衡行为。我们的方法考虑了不混溶性、弹性应变、界面自由能和表面偏析的影响。这用于解释在这些纳米粒子中发生的两个关键现象。第一个问题是二元体系在纳米尺度上是否仍然不混溶,如果是这样,第二相将采取什么形态。我们的研究结果表明,即使在 20nm 的尺寸下,热平衡的 Au-Pt 纳米粒子仍然主要不混溶,并表现出类似于体相系统的热力学行为。我们解释了为什么 20nm Au-Pt 纳米粒子会分离成半球,而不是厚壳核壳结构。这些见解对于进一步优化 Au-Pt 纳米粒子以提高催化活性至关重要。本研究中观察到的相分离的 Janus 粒子提供了增强的材料功能,这源于其等离子体、催化和表面特性的不均匀性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验