Landry-Truchon Kim, Fournier Stéphanie, Houde Nicolas, Rousseau Jean-Philippe, Jeannotte Lucie, Kinkead Richard
Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, Hôtel-Dieu de Québec, Québec, QC, Canada, G1R 3S3.
Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada, G1V 0A6.
J Exp Biol. 2017 Dec 15;220(Pt 24):4571-4577. doi: 10.1242/jeb.165084. Epub 2017 Oct 26.
Fetal development of the respiratory tract and diaphragm requires strict coordination between genetically controlled signals and mechanical forces produced by the neural network that generates breathing. HOXA5, which is expressed in the mesenchyme of the trachea, lung and diaphragm, and in phrenic motor neurons, is a key transcription factor regulating lung development and function. Consequently, most mutants die at birth from respiratory failure. However, the extensive effect of the null mutation makes it difficult to identify the origins of respiratory dysfunction in newborns. To address the physiological impact of tissue-specific roles, we used conditional gene targeting with the and mouse lines to produce specific deletions in the mesenchyme and motor neurons, respectively. expression in the mesenchyme is critical for trachea development, whereas its expression in phrenic motor neurons is essential for diaphragm formation. Breathing measurements in adult mice with whole-body plethysmography demonstrated that, at rest, only the motor neuron deletion affects respiration, resulting in higher breathing frequency and decreased tidal volume. But subsequent exposure to a moderate hypoxic challenge (i =0.12; 10 min) revealed that both mutant mice hyperventilate more than controls. ; mice showed augmented tidal volume while ; mice had the largest increase in breathing frequency. No significant differences were observed between medulla-spinal cord preparations from E18.5 control and ; mouse embryos that could support a role for in fetal inspiratory motor command. According to our data, expression in the mesenchyme and phrenic motor neurons controls distinct aspects of respiratory development.
呼吸道和横膈膜的胎儿发育需要基因控制信号与产生呼吸的神经网络所产生的机械力之间严格协调。HOXA5在气管、肺和横膈膜的间充质以及膈运动神经元中表达,是调节肺发育和功能的关键转录因子。因此,大多数突变体在出生时死于呼吸衰竭。然而,无效突变的广泛影响使得难以确定新生儿呼吸功能障碍的根源。为了研究组织特异性作用的生理影响,我们利用与和小鼠品系的条件基因靶向分别在间充质和运动神经元中产生特异性缺失。HOXA5在间充质中的表达对气管发育至关重要,而其在膈运动神经元中的表达对横膈膜形成至关重要。用全身体积描记法对成年小鼠进行呼吸测量表明,在静息状态下,只有运动神经元缺失会影响呼吸,导致呼吸频率升高和潮气量降低。但随后暴露于中度低氧刺激(i = 0.12;10分钟)显示,两种突变小鼠的通气过度均超过对照组。;小鼠的潮气量增加,而;小鼠的呼吸频率增加幅度最大。在E18.5对照和;小鼠胚胎的延髓-脊髓制剂之间未观察到显著差异,这可能支持HOXA5在胎儿吸气运动指令中的作用。根据我们的数据,HOXA5在间充质和膈运动神经元中的表达控制着呼吸发育的不同方面。