School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
School of Science, Wuhan University of Technology, Wuhan, 430070, China.
Nat Commun. 2017 Oct 27;8(1):1148. doi: 10.1038/s41467-017-01152-9.
The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10-10 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.
引力波宇宙学的标准的“警笛”方法通过来自并合双致密天体的波形信号来直接估计视亮度距离,特别是那些有电磁对应体并提供红移的双星。这种方法受到应变幅度校准不确定度的限制,并且依赖于波形的细节。爱因斯坦望远镜预计每年将产生 10-10 次引力波探测,其中 50-100 次将是透镜的。在这里,我们报告了一种不依赖于波形的策略,通过结合在电磁域中观测到的强引力波信号的精确测量的时间延迟以及图像和红移,来实现精确的宇宙学。我们证明,仅 10 个这样的系统就可以为第三代地面探测器时代的平坦 lambda 冷暗物质宇宙提供哈勃常数不确定性为 0.68%。