McKeithan Wesley L, Savchenko Alex, Yu Michael S, Cerignoli Fabio, Bruyneel Arne A N, Price Jeffery H, Colas Alexandre R, Miller Evan W, Cashman John R, Mercola Mark
Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States.
Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
Front Physiol. 2017 Oct 11;8:766. doi: 10.3389/fphys.2017.00766. eCollection 2017.
The ability to produce unlimited numbers of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) harboring disease and patient-specific gene variants creates a new paradigm for modeling congenital heart diseases (CHDs) and predicting proarrhythmic liabilities of drug candidates. However, a major roadblock to implementing hiPSC-CM technology in drug discovery is that conventional methods for monitoring action potential (AP) kinetics and arrhythmia phenotypes have been too costly or technically challenging to execute in high throughput. Herein, we describe the first large-scale, fully automated and statistically robust analysis of AP kinetics and drug-induced proarrhythmia in hiPSC-CMs. The platform combines the optical recording of a small molecule fluorescent voltage sensing probe (VoltageFluor2.1.Cl), an automated high throughput microscope and automated image analysis to rapidly generate physiological measurements of cardiomyocytes (CMs). The technique can be readily adapted on any high content imager to study hiPSC-CM physiology and predict the proarrhythmic effects of drug candidates.
能够产生携带疾病和患者特异性基因变异的无限数量的人诱导多能干细胞衍生心肌细胞(hiPSC-CM),为先天性心脏病(CHD)建模和预测候选药物的促心律失常风险创造了一种新范式。然而,在药物发现中应用hiPSC-CM技术的一个主要障碍是,用于监测动作电位(AP)动力学和心律失常表型的传统方法成本过高或技术上具有挑战性,难以进行高通量操作。在此,我们描述了首次对hiPSC-CM中的AP动力学和药物诱导的促心律失常进行大规模、全自动且具有统计学稳健性的分析。该平台结合了小分子荧光电压传感探针(VoltageFluor2.1.Cl)的光学记录、自动高通量显微镜和自动图像分析,以快速生成心肌细胞(CM)的生理测量数据。该技术可以很容易地应用于任何高内涵成像仪,以研究hiPSC-CM生理学并预测候选药物的促心律失常作用。