Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.
Adv Mater. 2017 Dec;29(47). doi: 10.1002/adma.201703764. Epub 2017 Oct 27.
A novel two-step surface modification method that includes atomic layer deposition (ALD) of TiO followed by post-annealing treatment on spinel LiNi Mn O (LNMO) cathode material is developed to optimize the performance. The performance improvement can be attributed to the formation of a TiMn O (TMO)-like spinel phase resulting from the reaction of TiO with the surface LNMO. The Ti incorporation into the tetrahedral sites helps to combat the impedance growth that stems from continuous irreversible structural transition. The TMO-like spinel phase also alleviates the electrolyte decomposition during electrochemical cycling. 25 ALD cycles of TiO growth are found to be the optimized parameter toward capacity, Coulombic efficiency, stability, and rate capability enhancement. A detailed understanding of this surface modification mechanism has been demonstrated. This work provides a new insight into the atomic-scale surface structural modification using ALD and post-treatment, which is of great importance for the future design of cathode materials.
一种新颖的两步表面改性方法,包括原子层沉积(ALD)的 TiO 随后对尖晶石 LiNi Mn O(LNMO)正极材料进行退火处理,以优化性能。性能的提高可以归因于 TiO 与表面 LNMO 反应形成 TiMn O(TMO)类似尖晶石相。Ti 掺入四面体位置有助于抑制由连续不可逆结构转变引起的阻抗增长。TMO 类似尖晶石相也减轻了电化学循环过程中电解质的分解。发现 TiO 生长的 25 个 ALD 循环是提高容量、库仑效率、稳定性和倍率性能的最佳参数。详细的表面改性机制已得到证明。这项工作为使用原子层沉积和后处理进行原子级表面结构改性提供了新的见解,这对未来的阴极材料设计具有重要意义。