Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ, USA.
Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
J Clin Pharmacol. 2018 Mar;58(3):364-376. doi: 10.1002/jcph.1022. Epub 2017 Oct 27.
Dose recommendations for specific populations are not always provided and, when available, typically rely on empirical derivation from a small fraction of the general population. In this study, a prediction/confirmation framework was applied to 2 model-based methods, physiologically based pharmacokinetics (PBPK) and a static model, to evaluate their ability to predict clearance in mild, moderate, and severe renal impairment populations and to inform dosing recommendations in these populations. Simulated renal impairment/healthy subject AUC ratios (AUCRs) from PBPK and static models were compared with observed AUCRs from dedicated clinical studies in renal impairment subjects for 7 drugs eliminated primarily by renal clearance. Both PBPK and static model predictions were within 2-fold of observed AUCRs for most compounds across all renal impairment categories. Predictions were generally more accurate for the mild and moderate renal impairment populations, with the majority of AUCR predictions within 80% to 125% of observed values for both methods. However, the accuracy of predictions was lower for the severe renal impairment population using the PBPK method. Given the accuracy observed, both methods may be suitable for prospective predictions for early decision-making, but are likely not sufficient sole justification for dose recommendations. There is a need to assess a larger database of compounds to enhance the predictive power of currently available tools.
对于特定人群,并非总是提供特定的剂量建议,而且在有建议时,通常依赖于从一般人群中的一小部分经验推导。在这项研究中,应用了预测/确认框架来评估 2 种基于模型的方法(生理药代动力学(PBPK)和静态模型),以评估它们在轻度、中度和重度肾功能损害人群中预测清除率的能力,并为这些人群中的剂量建议提供信息。将 PBPK 和静态模型模拟的肾功能损害/健康受试者 AUC 比值(AUCR)与肾功能损害受试者专用临床研究中的观察到的 AUCR 进行比较,用于 7 种主要通过肾脏清除消除的药物。在所有肾功能损害类别中,对于大多数化合物,PBPK 和静态模型的预测都在观察到的 AUCR 的 2 倍以内。对于轻度和中度肾功能损害人群,预测通常更准确,对于这两种方法,大多数 AUCR 预测值都在观察值的 80%到 125%之间。然而,使用 PBPK 方法时,对于重度肾功能损害人群,预测的准确性较低。鉴于观察到的准确性,这两种方法都可能适用于早期决策的前瞻性预测,但不太可能是剂量建议的唯一充分依据。需要评估更大的化合物数据库,以提高现有工具的预测能力。