Estévez Raúl, Elorza-Vidal Xabier, Gaitán-Peñas Héctor, Pérez-Rius Carla, Armand-Ugón Mercedes, Alonso-Gardón Marta, Xicoy-Espaulella Efren, Sirisi Sònia, Arnedo Tanit, Capdevila-Nortes Xavier, López-Hernández Tania, Montolio Marisol, Duarri Anna, Teijido Oscar, Barrallo-Gimeno Alejandro, Palacín Manuel, Nunes Virginia
Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Spain.
Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Spain.
Eur J Med Genet. 2018 Jan;61(1):50-60. doi: 10.1016/j.ejmg.2017.10.013. Epub 2017 Oct 25.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy characterized by dysfunction of the role of glial cells in controlling brain fluid and ion homeostasis. Patients affected by MLC present macrocephaly, cysts and white matter vacuolation, which lead to motor and cognitive impairments. To date, there is no treatment for MLC, only supportive care. MLC is caused by mutations in the MLC1 and GLIALCAM genes. MLC1 is a membrane protein with low identity to the Kv1.1 potassium channel and GlialCAM belongs to an adhesion molecule family. Both proteins form a complex with an as-yet-unknown function that is expressed mainly in the astrocytes surrounding the blood-brain barrier and in Bergmann glia. GlialCAM also acts as an auxiliary subunit of the chloride channel ClC-2, thus regulating its localization at cell-cell junctions and modifying its functional properties by affecting the common gate of ClC-2. Recent studies in Mlc1-, GlialCAM- and Clcn2-knockout mice or Mlc1-knockout zebrafish have provided fresh insight into the pathophysiology of MLC and further details about the molecular interactions between these three proteins. Additional studies have shown that GlialCAM/MLC1 also regulates other ion channels (TRPV4, VRAC) or transporters (Na/K-ATPase) in a not-understood manner. Furthermore, it has been shown that GlialCAM/MLC1 may influence signal transduction mechanisms, thereby affecting other proteins not related with transport such as the EGF receptor. Here, we offer a personal biochemical retrospective of the work that has been performed to gain knowledge of the pathophysiology of MLC, and we discuss future strategies that may be used to identify therapeutic solutions for MLC patients.
伴有皮质下囊肿的巨脑性白质脑病(MLC)是一种罕见的脑白质营养不良,其特征是神经胶质细胞在控制脑液和离子稳态方面的功能障碍。受MLC影响的患者表现为巨头畸形、囊肿和白质空泡化,进而导致运动和认知障碍。迄今为止,MLC尚无治疗方法,仅有支持性护理。MLC由MLC1和GLIALCAM基因的突变引起。MLC1是一种膜蛋白,与Kv1.1钾通道的同源性较低,而GlialCAM属于黏附分子家族。这两种蛋白形成一种功能未知的复合物,主要在血脑屏障周围的星形胶质细胞和伯格曼胶质细胞中表达。GlialCAM还作为氯离子通道ClC-2的辅助亚基,从而调节其在细胞间连接的定位,并通过影响ClC-2的共同门控来改变其功能特性。最近对Mlc1、GlialCAM和Clcn2基因敲除小鼠或Mlc1基因敲除斑马鱼的研究为MLC的病理生理学提供了新的见解,并进一步详细阐述了这三种蛋白之间的分子相互作用。其他研究表明,GlialCAM/MLC1还以一种尚未明确的方式调节其他离子通道(TRPV4、VRAC)或转运体(Na/K-ATP酶)。此外,已经表明GlialCAM/MLC1可能影响信号转导机制,从而影响其他与转运无关的蛋白,如表皮生长因子受体。在此,我们对为了解MLC病理生理学所开展的工作进行个人化的生化回顾,并讨论未来可能用于确定MLC患者治疗方案的策略。