Mamedes-Rodrigues T C, Batista D S, Vieira N M, Matos E M, Fernandes D, Nunes-Nesi A, Cruz C D, Viccini L F, Nogueira F T S, Otoni W C
Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
Departamento de Microbiologia/Núcleo de Análises de Biomoléculas-NUBIOMOL, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil.
Protoplasma. 2018 Mar;255(2):655-667. doi: 10.1007/s00709-017-1177-x. Epub 2017 Oct 28.
Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.
二穗短柄草是一种用于饲草和谷类作物研究的模式物种,已被用于旨在提高生物量产量和增加作物产量以用于生物燃料生产的研究中。体细胞胚胎发生(SE)是支持此类物种体外再生的形态发生途径。然而,在连续继代培养过程中的代谢谱和遗传稳定性方面的研究还存在空白。对连续继代培养(30、60、90、120、150、180、210、240和360天龄的继代培养物)的胚性愈伤组织(EC)和胚性结构(ES)的生理变量和代谢谱进行了分析。典型判别分析将EC分为三组:60、90以及120至240天。培养60天和90天的EC显示出最高的再生潜力。在添加2mg/L激动素的培养基中培养90天并进行SE诱导的EC是ES的最高生产者。对非胚性愈伤组织(NEC)、EC和ES进行主成分分析(PCA)的代谢物谱分为两组:30至240天龄和360天龄的愈伤组织。这些组中最丰富的代谢物是丙二酸、色氨酸、天冬酰胺和赤藓糖。ES的PCA也将不同培养天数分为不同组,并将60天和90天龄的愈伤组织列为最佳使用对象,因为它们含有高水平的各种代谢物。区分ES组的关键代谢物是棉子糖、草酰乙酸、色氨酸和缬氨酸。此外,重要的次生代谢物(如咖啡酰奎宁酸、肉桂酸和阿魏酸)在EC阶段很重要。阿魏酸、肉桂酸和苯乙酸标志着二穗短柄草中ES再生能力的下降。天冬氨酸、天冬酰胺、色氨酸和甘氨酸等氨基酸积累的减少是NEC的特征,这表明这些代谢物对于二穗短柄草的胚性能力是不可或缺的。通过流式细胞术评估再生植株的遗传稳定性,结果表明二穗短柄草愈伤组织再生植株的倍性不稳定性与愈伤组织年龄无关。综上所述,我们的数据表明,二穗短柄草EC的再生能力在继代培养120天后丧失,这表明EC的使用可以延长至90天。