Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland.
New Phytol. 2018 Jan;217(2):784-798. doi: 10.1111/nph.14847. Epub 2017 Oct 30.
Strigolactones (SLs) are carotenoid-derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG-class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X-ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time-lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate-poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL-dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate-poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.
独脚金内酯(SLs)是一种类胡萝卜素衍生的植物激素,能够影响植物的形态建成,并诱导植物与丛枝菌根真菌共生。在矮牵牛中,ABC 转运蛋白 PDR1 驱动着 SL 在植物体内和向根际的运输。PDR1 的表达受植物激素和土壤磷含量的调控,因此 SL 的运输将植物发育与养分状况整合在一起。我们过表达 PDR1(PDR1 OE)来研究增加内源性 SL 运输是否足以改善植物的营养和生产力。我们应用了磷定量和无损 X 射线计算机断层扫描技术。通过延时显微镜和定量 PCR,在细胞和整个组织水平上对形态和基因表达变化进行了量化。在缺磷土壤上,PDR1 OE 显著增强了磷酸盐的吸收和植物生物量的产生。PDR1 OE 植物表现出侧根形成增加、根毛伸长延长、更快的菌根化和叶片衰老减少。通过解除 SL 合成基因对 SL 的依赖负反馈,PDR1 的过表达显著增加了 SL 的生物合成。PDR1 OE 植物中增加的内源性 SL 运输/合成是提高在缺磷土壤上植物生长的有力工具。我们提出 PDR1 是一个尚未被探索的特性,可以用于研究作物生产。过表达 PDR1 是研究 SL 功能和运输途径的一种有价值的策略。